- #1
Panphobia
- 435
- 13
Homework Statement
If you have the heat equation
$$u_{t}-u_{xx}=a \\ u(0,t)=b\\u(1,t)=c\\u(x,0)=d$$
Show that the solution to the above equation can be made up of a linear combination of solutions to
$$u_{t}-u_{xx}=a_i \\ u(0,t)=b_i\\u(1,t)=c_i\\u(x,0)=d_i$$
$$i=1,2,3,4$$
if the following matrix has no zero eigenvalues.
$$A =\begin{bmatrix}
a_1 & a_2 & a_3 & a_4 \\
b_1 & b_2 & b_3 & b_4 \\
c_1 & c_2 & c_3 & c_4 \\
d_1 & d_2 & d_3 & d_4
\end{bmatrix}$$
So I know that if a matrix has a zero eigenvalue, then it is singular. A matrix is only singular if it has at least two rows that are not linearly independent. Can someone give me a hint on how to continue this proof? I know that because it mentions zero eigenvalues that it has to do with linear independence, but I have no clue.