- #1
Duderonimous
- 63
- 1
Homework Statement
Minimize the following using boolean identities
1. AB'CD+(ABC')'+ABCD'
Homework Equations
Identity 1A=A 0+A = A
Null (or Dominance) Law 0A = 0 1+A = 1
Idempotence Law AA = A A+A = A
Inverse Law AA = 0 A+A = 1
Commutative Law AB = BA A+B = B+A
Associative Law (AB)C = A(BC) (A+B)+C = A+(B+C)
Distributive Law A+BC = (A+B)(A+C) A(B+C) = AB+AC
Absorption Law A(A+B) = A A+AB = A
DeMorgan's Law (AB) = A+B (A+B) = A B
The Attempt at a Solution
I'm going to use lower case letters now.f=ab'cd+(abc')'+abcd'
f'=(ab'cd+(abc')+abcd')'
=(ab'cd)'(abc')''(abcd')'
=(a'+b+c'+d')(abc')(a'+b'+c'+d)
=(aa'bc'+abbc'+abc'c'+abc'd')(a'+b'+c'+d)
=(abc'+abc'+abcd')(a'+b'+c'+d)
=(abc'+abcd')(a'+b'+c'+d')
=(0+0+0+0+abc'c'+abc'c'd'+abc'd+0)
=abc'+abc'd'+abc'd
=abc'+abc'(d'+d)
=abc'+abc'(1)
=abc'
f'=abc'
f=(abc')'
--> f=a'+b'+c
Do this look correct? If so is there a shorter way to minimize it? Is there a way to minimize without using DeMorgan's theorem at the top? Thanks