I How can engineers get away with splitting differentials in dynamics?

  • I
  • Thread starter Thread starter Trying2Learn
  • Start date Start date
AI Thread Summary
The discussion centers on the mathematical validity of manipulating differentials in introductory dynamics, particularly the progression from velocity and acceleration to the equation vdv = ads. While this approach works for certain one-dimensional problems, it raises concerns about the rigor of splitting differentials, which can lead to oversights, especially when transitioning between vector and scalar forms. Participants note that engineers often use this method despite its mathematical shortcomings, suggesting that familiarity with these manipulations allows for practical applications, albeit with risks. Caution is advised, as improper handling of differentials can lead to errors in more complex scenarios. Ultimately, the conversation highlights the balance between practical engineering applications and the need for mathematical precision.
Trying2Learn
Messages
375
Reaction score
57
TL;DR Summary
splitting the differential
In an introductory dynamics textbook, we often see this progression

v = ds/dt ---> dt = ds/v

a = dv/dt ---> dt = dv/a

Equating the dt, we get: vdv=ads

Now my question

On the one hand, this works for certain problems.
On the other hand, this is splitting the differential.

Could someone please explain

Why it works under certain conditions? How engineers get away with this?

If it is poor math to do this: why? Is it because one should never split the differential?

How can engineers get away with this?

I see that it does work, but only in ONE dimension.

This whole issue has always bothered me but I cannot state, with clarity, conviction, precision:
Why it is poor math to do this
Why we can get away with it.
 
Physics news on Phys.org
Physicists are usually pretty casual in dealing with differentials :smile: .
In the 'progression' you quote, the expressions at the left are vector equations; the ones on the right are scalar expressions.
Beginning physicists should be careful not to accidentally hop back and forth, or they risk overlooking a Jacobian and other useful mathematical goodies.

##\ ##
 
  • Like
Likes fresh_42, topsquark and vanhees71
Trying2Learn said:
TL;DR Summary: splitting the differential

In an introductory dynamics textbook, we often see this progression

v = ds/dt ---> dt = ds/v

a = dv/dt ---> dt = dv/a

Equating the dt, we get: vdv=ads

Now my question

On the one hand, this works for certain problems.
On the other hand, this is splitting the differential.

Could someone please explain

Why it works under certain conditions? How engineers get away with this?

If it is poor math to do this: why? Is it because one should never split the differential?

How can engineers get away with this?

I see that it does work, but only in ONE dimension.

This whole issue has always bothered me but I cannot state, with clarity, conviction, precision:
Why it is poor math to do this
Why we can get away with it.
A formal proof of why this jugglery with "d"'s actually works is a nightmare because they are not even defined as solids at this level.
$$
\dfrac{ds}{dt}=\lim_{h \to 0}\dfrac{s(t+h)-s(t)}{h}
$$
Now, how would you isolate ##dt## here? I like to avoid such steps by using Weierstraß's formula: $$ s(t+h)= s(t)+ s'(t) \cdot h + o(h)$$ with a remainder ##o(h)## that is quadratic in ##h## so it vanishes fast as ##h## goes to zero. With that formula, Weierstraß has out all the limit stuff in the ##o(h)## term and we can work with them as there was no limit stuff.

You should be careful with
BvU said:
Physicists are usually pretty casual in dealing with differentials :smile: .
because: they have practiced juggling! It can go wrong!
 
fresh_42 said:
It can go wrong!
Tell me something I don't know :smile:

Been there, done that.

##\ ##
 
  • Haha
Likes malawi_glenn and fresh_42
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top