- #1
johne1618
- 371
- 0
If most of the mass/energy of a proton is due to the kinetic energy of its quarks and gluons, rather than interaction with the Higgs field, then how can we explain its inertial mass, i.e. its resistance to acceleration, as being due to a drag induced by the Higgs field?
Alternatively imagine a body made up of particles whose mass/energy is provided by the Higgs field. Now let us spin that body very fast. Its mass/energy will increase due to relativistic mass increase of the moving particles. We know that its inertial mass will increase - it will be harder to accelerate the whole body linearly with a given force. But the Higgs field is Lorentz invariant so that if the inertial resistance force is due to the Higgs field then it shouldn't be any harder to accelerate the body whether it is spinning or not.
Alternatively imagine a body made up of particles whose mass/energy is provided by the Higgs field. Now let us spin that body very fast. Its mass/energy will increase due to relativistic mass increase of the moving particles. We know that its inertial mass will increase - it will be harder to accelerate the whole body linearly with a given force. But the Higgs field is Lorentz invariant so that if the inertial resistance force is due to the Higgs field then it shouldn't be any harder to accelerate the body whether it is spinning or not.
Last edited: