- #1
ChrisVer
Gold Member
- 3,378
- 465
In case you have the Kahler and super- potential [itex]K,W[/itex]:
[itex] K(T,S,C) = -log (S +S^{*}) -3 log ( T+ T^{*} - C C^{*}) [/itex]
[itex] W(T,S,C)= C^{3} + d e^{-aS} +b [/itex]
with [itex]T,S,C[/itex] chiral super fields, [itex]b,d[/itex] complex numbers and [itex]a>0[/itex].
I tried to calculate the local F-terms arising from this. The local F-terms for the i-th chiral superfield are given by:
[itex] F_{i}= D_{i}W = K_{i}W + W_{i}[/itex]
where in the rhs the index i denotes the derivative wrt to the i-th field. eg [itex]W_{S}=\frac{\partial W}{\partial S}[/itex]
However I'm having a slight problem with the particular derivative. See what I mean...taking it:
[itex] F_{S}= K_{S} W + W_{S} = - \frac{C^{3} + d e^{-aS} +b}{S+S^{*}} -d a e^{-aS}[/itex]
correct?
On the other hand, if I try to work with the covariant derivative wrt to the conjugate fields:
[itex] F^{*}_{S}= D_{S^{*}} W^{*} = K_{S^{*}} W^{*} + W_{S^{*}} [/itex]
I don't get the complex conjugate of the above. Because in this case
[itex]W_{S^{*}}=0[/itex]
and so:
[itex] F^{*}_{S}= - \frac{(C^{3} + d e^{-aS} +b)^{*}}{S+S^{*}}[/itex]
what's the problem?
[itex] K(T,S,C) = -log (S +S^{*}) -3 log ( T+ T^{*} - C C^{*}) [/itex]
[itex] W(T,S,C)= C^{3} + d e^{-aS} +b [/itex]
with [itex]T,S,C[/itex] chiral super fields, [itex]b,d[/itex] complex numbers and [itex]a>0[/itex].
I tried to calculate the local F-terms arising from this. The local F-terms for the i-th chiral superfield are given by:
[itex] F_{i}= D_{i}W = K_{i}W + W_{i}[/itex]
where in the rhs the index i denotes the derivative wrt to the i-th field. eg [itex]W_{S}=\frac{\partial W}{\partial S}[/itex]
However I'm having a slight problem with the particular derivative. See what I mean...taking it:
[itex] F_{S}= K_{S} W + W_{S} = - \frac{C^{3} + d e^{-aS} +b}{S+S^{*}} -d a e^{-aS}[/itex]
correct?
On the other hand, if I try to work with the covariant derivative wrt to the conjugate fields:
[itex] F^{*}_{S}= D_{S^{*}} W^{*} = K_{S^{*}} W^{*} + W_{S^{*}} [/itex]
I don't get the complex conjugate of the above. Because in this case
[itex]W_{S^{*}}=0[/itex]
and so:
[itex] F^{*}_{S}= - \frac{(C^{3} + d e^{-aS} +b)^{*}}{S+S^{*}}[/itex]
what's the problem?