- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
How can I apply L'Hôpital's rule, in order to find this limit?$$ \lim_{n \to +\infty} \frac{n^{\sqrt n}}{2^n} $$
That's what I have tried so far:
$$ \lim_{n \to +\infty} \frac{n^{\sqrt n}}{2^n} =\lim_{n \to +\infty} \frac{e^{\sqrt{n} \ln n}}{e^{n \ln 2} }=\lim_{n \to +\infty} e^{\sqrt{n} \ln n-n \ln 2}$$
How can I continue? (Thinking)
How can I apply L'Hôpital's rule, in order to find this limit?$$ \lim_{n \to +\infty} \frac{n^{\sqrt n}}{2^n} $$
That's what I have tried so far:
$$ \lim_{n \to +\infty} \frac{n^{\sqrt n}}{2^n} =\lim_{n \to +\infty} \frac{e^{\sqrt{n} \ln n}}{e^{n \ln 2} }=\lim_{n \to +\infty} e^{\sqrt{n} \ln n-n \ln 2}$$
How can I continue? (Thinking)