How Can I Correctly Solve a Line Integral for Atmospheric Scattering?

In summary: Yes, I think I made a mistake in my calculation. I should have used e^(-HeightOf(P)^2 / H_0) instead of e^(-HeightOf(P) / H_0).
  • #1
integrator
2
0
Hello!

I am working on atmospheric scattering and therefore I have to calculate the optical depth along a given path through the atmosphere.

The integral I have to solve is this one:
[tex]\int_{P_a}^{P_b} f ds \quad with \quad f:R\rightarrow R, h\rightarrow e^{(-h/H_0)}[/tex]

[tex]P_a[/tex] und [tex]P_b[/tex] are Points in [tex]R^3[/tex] and I have to solve the integral along the path from [tex]P_a[/tex] to [tex]P_b[/tex]. [tex]H_0[/tex] is just a constant and h is the height of a point between the line from [tex]P_a[/tex] to [tex]P_b[/tex] .
So obviously this is a line integral (at least I hope so), which can be solved this way:

[tex]\int_{P_a}^{P_b} f ds \quad = \quad \int_{a}^{b} f(r(t)) * |r'(t)| dt [/tex]

r is the parameterization of the path, so my r is:
r: [a,b] [tex]\rightarrow R^3[/tex].
r(t) (t is in [a,b]) gives me a point on the path from [tex]P_a[/tex] to [tex]P_b[/tex], with r(a) = [tex]P_a[/tex] and r(b) = [tex]P_b[/tex].
Now I have the problem that the result of r doesn't fit to the input of f, because f needs a height and not a point in [tex]R^3[/tex] .
Therefore I slightly change f (and now call it f2):
[tex]f2:R^3 \rightarrow R, P \rightarrow e^{(-HeightOf(P)/H_0)}[/tex]

f2 expects a point in [tex]R^3[/tex] and calculates the height of the point P itself.

Now I just need the parameterization r of the path. Two solutions came into my mind:
1) [tex] r: [0,1] \rightarrow R^3, t \rightarrow P_a + t * (P_b - P_a) \quad with \quad r'(t) = LengthFromPaToPb = Length
[/tex]
2) [tex] r: [0, N] \rightarrow R^3, t \rightarrow P_a + t * (P_b - P_a) / N \quad with \quad r'(t) = LengthFromPaToPb / N = sampleLength [/tex]

If I pick parameterization 1) I end with this formula:

[tex]\int_{P_a}^{P_b} f ds \quad = \quad \int_{0}^{1} f2(r(t)) * |r'(t)| dt \quad = \quad \int_{0}^{1} f2(r(t)) * Length dt \quad = \quad Length * \int_{0}^{1} f2(r(t)) dt[/tex]

I numerically solve this integral with the trapezium rule.
My problem is, that the solutions I get with the trapezium rule are really big (up to 14000). Maybe its because the length of my paths between Pa and Pb are long (about 80000meters) and thus my Length is also very big.

I can't believe that values around 14000 are right (I have read in a paper, that the optical depth at the horizon is about 6).
So I am asking you: did I make something wrong?

Thanks for your help!
 
Physics news on Phys.org
  • #2
The method you used looks about right. I didnt check the details.

You can do some rough calculations to check whether your result should rather be 6 or 14 000.

You write the distance between your two points is 80 000 and you choose a linear path for the integration.

What is your value for H_0 and and at what heights are your starting and end point? Does the height of a point depend on the coordinates of the point in an easy way (for example just the z-coordinate) or does it involve complicated formulae to account for the curvature of the atmosphere (or whatever)?
 
  • #3
This is my coordinate system: http://www.infoboard.org/screenshots/system.png
P_a can be any point on the vertical gray line and P_b can be any of the orange points on the outer radius (atmosphere).
The inner circle is the Earth and has an radius of 6 000 000 meters and the outer radius is the atmosphere and has an radius of 6 080 000 meters (so my atmosphere has a height of 80 000m)

My paramterization r gives me a point on the line between P_a and P_b.
My function f2 is e^(-HeightOf(P) / H_0) and HeightOf(P) is basically just this:
|P| - innerRadius (the length of the vector P minus the radius of the earth).
My H_0 is 20000m.

Do you see any errors in this?
 
Last edited by a moderator:

FAQ: How Can I Correctly Solve a Line Integral for Atmospheric Scattering?

1. What is a line integral?

A line integral is a type of integral that involves integrating a function along a curve or path. It is used to calculate quantities such as work, flux, and circulation in physics and engineering.

2. How do you solve a line integral?

To solve a line integral, you first need to parameterize the curve or path by finding a function that describes it. Then, you use this function to set up the integral and evaluate it using integration techniques such as substitution or integration by parts.

3. What is the difference between a line integral and a double integral?

The main difference between a line integral and a double integral is the dimensionality of the region being integrated over. A line integral involves integrating over a curve or path in one dimension, while a double integral involves integrating over a two-dimensional region.

4. What are some applications of line integrals?

Line integrals have many applications in physics and engineering. They can be used to calculate the work done by a force along a curve, the flux of a vector field through a curve, and the circulation of a vector field around a curve. They are also used in complex analysis to evaluate path integrals.

5. Can you use line integrals to calculate the area under a curve?

No, line integrals are not used to calculate the area under a curve. This is because they integrate a function over a curve or path, not over a two-dimensional region. To calculate the area under a curve, you would use a regular integral or a double integral if the region is two-dimensional.

Similar threads

Back
Top