MHB How can I ensure continuity for a piecewise function with a radical term?

Petrus
Messages
702
Reaction score
0
Hello MHB,
If I want to decide constant a and b so its continuous over the whole R for this piecewise function
102oyec.png

basicly what I got problem with is that $$x^{1/3}$$ is not continuous for negative value so it will never be continuous for any value on constant a,b. I am missing something? or do they mean $$\frac{1}{8}$$ and not $$-\frac{1}{8}$$

Regards,
$$|\pi\rangle$$
 
Physics news on Phys.org
Petrus said:
Hello MHB,
If I want to decide constant a and b so its continuous over the whole R for this piecewise function
102oyec.png

basicly what I got problem with is that $$x^{1/3}$$ is not continuous for negative value so it will never be continuous for any value on constant a,b. I am missing something? or do they mean $$\frac{1}{8}$$ and not $$-\frac{1}{8}$$

Regards,
$$|\pi\rangle$$
In fact
\sqrt[3]{x} is defined for all real numbers but the problem is in
\sqrt[n]{x} with n even number
for a function to be continuous at a point c
\lim_{x \rightarrow c^- } f(x) = \lim_{x\rightarrow c^+ } f(x) = f(c)
 
Amer said:
In fact
\sqrt[3]{x} is defined for all real numbers but the problem is in
\sqrt[n]{x} with n even number
for a function to be continuous at a point c
\lim_{x \rightarrow c^- } f(x) = \lim_{x\rightarrow c^+ } f(x) = f(c)
Thanks for the fast respond you are totally correct! I confused myself! Have a nice day!

Regards,
$$|\pi\rangle$$
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top