- #1
cbarker1
Gold Member
MHB
- 349
- 23
Express as a Single Logarithm. Assume all the logarithms have the same base. The problem is:
$4*\log_{d}\left({a}\right)-\frac{5}{6}*\log_{d}\left({b}\right)+\frac{2}{3}*\log_{d}\left({c}\right)$, where $d\gt1$
then I use the power rule for logarithm for the beginning and use some grouping symbols for last two:
$\log_{d}\left({a^4}\right)-(\frac{5}{6}\log_{d}\left({b}\right)+\frac{2}{3}\log_{d}\left({c}\right))$
Afterwards, I combine the coeffecients of the logarithms to be the common denominator of one sixth :
$\log_{d}\left({a^4}\right)-(\frac{5}{6}\log_{d}\left({b}\right)+\frac{4}{6}\log_{d}\left({c}\right))$
Here is where I have some trouble. Do I factor the one-sixth;then, use the sum-multiplication inside the group symbol or use the power again and the sum-multiplication rule for log inside the grouping symbol like this:
$\log_{d}\left({a^4}\right)-(\frac{5}{6}\log_{d}\left({b}\right)+\frac{4}{6}\log_{d}\left({c}\right))$ to
$\log_{d}\left({a^4}\right)-(\frac{1}{6}({5}\log_{d}\left({b}\right)+4\log_{d}\left({c}\right)))$
from that to this
$\log_{d}\left({a^4}\right)-(\frac{1}{6}(\log_{d}\left({b^5*c^4}\right))$
to $\log_{d}\left({a^4}\right)-\frac{1}{6}(\log_{d}\left({b^5*c^4}\right))$
Or
$\log_{d}\left({a^4}\right)-(\frac{5}{6}\log_{d}\left({b}\right)+\frac{4}{6}\log_{d}\left({c}\right))$
$\log_{d}\left({a^4}\right)-(\log_{d}\left({\sqrt[6]{b^5}}\right)+\log_{d}\left({\sqrt[6]{c^4}}\right))$
$\log_{d}\left({a^4}\right)-(\log_{d}\left({\sqrt[6]{b^5}*\sqrt[6]{c^4}}\right))$
$\log_{d}\left({a^4}\right)-(\log_{d}\left({\sqrt[6]{b^5*c^4}}\right))$
What to do next?Thank you
Cbarker1
$4*\log_{d}\left({a}\right)-\frac{5}{6}*\log_{d}\left({b}\right)+\frac{2}{3}*\log_{d}\left({c}\right)$, where $d\gt1$
then I use the power rule for logarithm for the beginning and use some grouping symbols for last two:
$\log_{d}\left({a^4}\right)-(\frac{5}{6}\log_{d}\left({b}\right)+\frac{2}{3}\log_{d}\left({c}\right))$
Afterwards, I combine the coeffecients of the logarithms to be the common denominator of one sixth :
$\log_{d}\left({a^4}\right)-(\frac{5}{6}\log_{d}\left({b}\right)+\frac{4}{6}\log_{d}\left({c}\right))$
Here is where I have some trouble. Do I factor the one-sixth;then, use the sum-multiplication inside the group symbol or use the power again and the sum-multiplication rule for log inside the grouping symbol like this:
$\log_{d}\left({a^4}\right)-(\frac{5}{6}\log_{d}\left({b}\right)+\frac{4}{6}\log_{d}\left({c}\right))$ to
$\log_{d}\left({a^4}\right)-(\frac{1}{6}({5}\log_{d}\left({b}\right)+4\log_{d}\left({c}\right)))$
from that to this
$\log_{d}\left({a^4}\right)-(\frac{1}{6}(\log_{d}\left({b^5*c^4}\right))$
to $\log_{d}\left({a^4}\right)-\frac{1}{6}(\log_{d}\left({b^5*c^4}\right))$
Or
$\log_{d}\left({a^4}\right)-(\frac{5}{6}\log_{d}\left({b}\right)+\frac{4}{6}\log_{d}\left({c}\right))$
$\log_{d}\left({a^4}\right)-(\log_{d}\left({\sqrt[6]{b^5}}\right)+\log_{d}\left({\sqrt[6]{c^4}}\right))$
$\log_{d}\left({a^4}\right)-(\log_{d}\left({\sqrt[6]{b^5}*\sqrt[6]{c^4}}\right))$
$\log_{d}\left({a^4}\right)-(\log_{d}\left({\sqrt[6]{b^5*c^4}}\right))$
What to do next?Thank you
Cbarker1