- #1
Another1
- 40
- 0
How can I find Cauchy principal value. of this integral
\[ n(x) = \int_{a}^{b} \frac{d \omega}{\omega ' ^2 - x^2} \] Where $ a<x<b $
I case $a = 0, b = 3, x = 1$ We get
\[ n(1) = \int_{0}^{3} \frac{d \omega}{\omega ' ^2 - 1^2} = −0.3465735902799727 \] The result shown is the Cauchy principal value.
You can check this answer with https://www.integral-calculator.com/
\[ n(x) = \int_{a}^{b} \frac{d \omega}{\omega ' ^2 - x^2} \] Where $ a<x<b $
I case $a = 0, b = 3, x = 1$ We get
\[ n(1) = \int_{0}^{3} \frac{d \omega}{\omega ' ^2 - 1^2} = −0.3465735902799727 \] The result shown is the Cauchy principal value.
You can check this answer with https://www.integral-calculator.com/