- #1
spaghetti3451
- 1,344
- 34
I want to find the orthogonal matrix ##\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}## which diagonalises the matrix ##\begin{pmatrix} 0 & m\\ m & M \end{pmatrix}##.
The eigenvalues are easily found to be ##\lambda = \frac{M}{2} \pm \frac{1}{2}\sqrt{M^{2}+4m^{2}}.##
However, I am having trouble finding the eigenvectors. I have the eigenvector equation ##\begin{pmatrix} 0 & m\\ m & M \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix},##
which gives me ##mb = \left( \frac{M}{2} \pm \frac{1}{2}\sqrt{M^{2}+4m^{2}} \right)a## and ##ma+Mb = \left( \frac{M}{2} \pm \frac{1}{2}\sqrt{M^{2}+4m^{2}} \right)b.##
Could you help me out here? The answer's supposed to be ##\cos \theta = \frac{1}{2} \arctan \frac{2m}{M}##.
The eigenvalues are easily found to be ##\lambda = \frac{M}{2} \pm \frac{1}{2}\sqrt{M^{2}+4m^{2}}.##
However, I am having trouble finding the eigenvectors. I have the eigenvector equation ##\begin{pmatrix} 0 & m\\ m & M \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix},##
which gives me ##mb = \left( \frac{M}{2} \pm \frac{1}{2}\sqrt{M^{2}+4m^{2}} \right)a## and ##ma+Mb = \left( \frac{M}{2} \pm \frac{1}{2}\sqrt{M^{2}+4m^{2}} \right)b.##
Could you help me out here? The answer's supposed to be ##\cos \theta = \frac{1}{2} \arctan \frac{2m}{M}##.
Last edited: