- #1
marc017
- 7
- 0
This isn't homework, It is just book problems that I am practicing, I am checking some answers with wolfram and others with the book answers.
[tex]
\begin{align}
\int \frac{sin(w)\,dw}{\sqrt{1-cos(w)}}\\
\end{align}
[/tex]
I used u substitution... Not sure if I approached this problem the correct way
[tex]
\begin{align}
\int \frac{sin(w)\,dw}{\sqrt{1-cos(w)}}\\
\end{align}
[/tex]
Using U sub... U = cos(w), du = -sin(w)
[tex]
\begin{align}
- \int \frac{\,du}{\sqrt{1-u}}\\
\end{align}
[/tex]
Using n sub... n=1-u, dn = -1
[tex]
\begin{align}
\int \frac{\,du}{\sqrt{n}} = 2\sqrt{(1-cos(w))} + C\\
\end{align}
[/tex]
Homework Statement
[tex]
\begin{align}
\int \frac{sin(w)\,dw}{\sqrt{1-cos(w)}}\\
\end{align}
[/tex]
Homework Equations
I used u substitution... Not sure if I approached this problem the correct way
The Attempt at a Solution
[tex]
\begin{align}
\int \frac{sin(w)\,dw}{\sqrt{1-cos(w)}}\\
\end{align}
[/tex]
Using U sub... U = cos(w), du = -sin(w)
[tex]
\begin{align}
- \int \frac{\,du}{\sqrt{1-u}}\\
\end{align}
[/tex]
Using n sub... n=1-u, dn = -1
[tex]
\begin{align}
\int \frac{\,du}{\sqrt{n}} = 2\sqrt{(1-cos(w))} + C\\
\end{align}
[/tex]
Last edited: