- #1
sooyewguan
- 1
- 0
Lets say I have an equation,
[tex]y=\alpha e^{\beta W}[/tex]
where,
[tex]\alpha = a e^{b f}[/tex] and [tex]\beta = c f + d[/tex]
[tex]W = \int^{T}_{0}f dt[/tex]
My problem now is, what happen if [tex]f[/tex] is changing with time [tex]t[/tex], [tex]f(t)[/tex]
How do I modify my main equation, [tex]y[/tex], so that it become an continuous-time function, [tex]y(t)[/tex].
Thank you.
[tex]y=\alpha e^{\beta W}[/tex]
where,
[tex]\alpha = a e^{b f}[/tex] and [tex]\beta = c f + d[/tex]
[tex]W = \int^{T}_{0}f dt[/tex]
My problem now is, what happen if [tex]f[/tex] is changing with time [tex]t[/tex], [tex]f(t)[/tex]
How do I modify my main equation, [tex]y[/tex], so that it become an continuous-time function, [tex]y(t)[/tex].
Thank you.