- #1
Haorong Wu
- 418
- 90
- Homework Statement
- Suppose ##[A,B]=C##, and ##C## does not commute with ##A## and ##B##. Prove $$e^{A+B}=e^Ae^B \exp (-\frac 1 2 C -\frac 1 6 [C,A] - \frac 1 3 [C,B] + \dots) .$$
- Relevant Equations
- NaN
I find in Wikipedia that the equation is very like the Zassenhaus formula $$e^{t(X+Y)}=e^{tX}e^{tY}e^{-\frac {t^2} 2 [X,Y]} e^{\frac {t^3} 6 (2[Y,[X,Y]]+[X,[X,Y]])}\dots .$$ But I still have no clues.
I try to prove it as the prove of Glauber formula. I start with letting ##f(\lambda)=e^{\lambda A}e^{\lambda B} ## and ##g(\lambda)=e^{\lambda A} B e^{-\lambda A}##. Then ##f'(\lambda)=Ae^{\lambda A}e^{\lambda B} +e^{\lambda A}e^{\lambda B} B##. and ##g'(\lambda)=e^{\lambda A} C e^{-\lambda A}##.
Next, I try to switch ##A## and ##C##. First, I derive that $$ [C,e^{-\lambda A}]=-\lambda [C,A] e^{-\lambda A}.$$ So ##g'(\lambda)=C-\lambda [C,A] e^{-\lambda A}##.
Then integrating ##g'(\lambda)## does not give me a clear result. I do not know how to proceed.
I try to prove it as the prove of Glauber formula. I start with letting ##f(\lambda)=e^{\lambda A}e^{\lambda B} ## and ##g(\lambda)=e^{\lambda A} B e^{-\lambda A}##. Then ##f'(\lambda)=Ae^{\lambda A}e^{\lambda B} +e^{\lambda A}e^{\lambda B} B##. and ##g'(\lambda)=e^{\lambda A} C e^{-\lambda A}##.
Next, I try to switch ##A## and ##C##. First, I derive that $$ [C,e^{-\lambda A}]=-\lambda [C,A] e^{-\lambda A}.$$ So ##g'(\lambda)=C-\lambda [C,A] e^{-\lambda A}##.
Then integrating ##g'(\lambda)## does not give me a clear result. I do not know how to proceed.