How can I rearrange this complex formula in Excel to solve for G13?

  • MHB
  • Thread starter dipster307
  • Start date
  • Tags
    Formula
In summary: Can someone help me fix it?In summary, the equation above is used in MS Excel, and has variables G13, B12, C8, B3, C18, B9, and C5. The constants $\alpha$, $\beta$, $\gamma$, and $C19$ have been defined to make the equation easier to work with. The minus sign has been distributed to obtain 40981.10. The equation can be solved by multiplying out and combining terms with G13 in them, and those that don't have G13 in them. When I solve for X, I get 71594.13. However, if I plug in the values into
  • #1
dipster307
5
0
I an having problems trying arrange the formula below. I want to change it so the formula starts wuth "G13" equals to.

40981.10 = G13 - ( (((G13-B12-C8)*C3) + (B12*B3)) + (((C18-B9)*C5) + ((G13-C18)*C19)) )

The equation above is used in MS Excel, this is why you see the variable G13, B12 etc.
B12 = 34370
C8 = 8105
C3 = 0.4
B3 = 0.2
C18 = 42475
B9 = 7605
C5 = 0.12
C19 = 0.02
Can someone please help.
 
Mathematics news on Phys.org
  • #2
First step: distribute the minus sign to obtain

40981.10 = G13 - (((G13-B12-C8)*C3) + (B12*B3)) - (((C18-B9)*C5) + ((G13-C18)*C19)).

Next, you have to scan the equation for appearances of G13. Where are they? Do they multiply other numbers? If so, can you gather all those expression in one place?
 
  • #3
dipster307 said:
I an having problems trying arrange the formula below. I want to change it so the formula starts wuth "G13" equals to.

40981.10 = G13 - ( (((G13-B12-C8)*C3) + (B12*B3)) + (((C18-B9)*C5) + ((G13-C18)*C19)) )

The equation above is used in MS Excel, this is why you see the variable G13, B12 etc.
B12 = 34370
C8 = 8105
C3 = 0.4
B3 = 0.2
C18 = 42475
B9 = 7605
C5 = 0.12
C19 = 0.02
Can someone please help.

Let's define some constants to make them easier to work with. You can define these in excel if you like instead of back subbing.

$\alpha = B12+C8$
$\beta = B12 \cdot B3$
$\gamma = (C18 - B9) \cdot C5$

In case you're wondering I have used an addition sign in $\alpha$ because G13 - B12-C8 = G13 - (B12+C8)

We can now sub in the constants we've defined above:
40981.10 = G13 -( (((G13 - $\alpha$ )*C3) + $\beta$ + ( $\gamma $ + ((G13-C18)*C19)) )

After distributing the minus sign and clearing up superfluous brackets:
40981.10 = G13 - (G13 - $\alpha$ )*C3 - $\beta$ - ( $\gamma $ + (G13-C18)*C19)You can distribute that minus sign in the last term too. From there it's a case of multiplying out and then combining those terms with G13 in them and those that don't.
 
  • #4
SuperSonic4 said:
Let's define some constants to make them easier to work with. You can define these in excel if you like instead of back subbing.

$\alpha = B12+C8$
$\beta = B12 \cdot B3$
$\gamma = (C18 - B9) \cdot C5$

In case you're wondering I have used an addition sign in $\alpha$ because G13 - B12-C8 = G13 - (B12+C8)

We can now sub in the constants we've defined above:
40981.10 = G13 -( (((G13 - $\alpha$ )*C3) + $\beta$ + ( $\gamma $ + ((G13-C18)*C19)) )

After distributing the minus sign and clearing up superfluous brackets:
40981.10 = G13 - (G13 - $\alpha$ )*C3 - $\beta$ - ( $\gamma $ + (G13-C18)*C19)You can distribute that minus sign in the last term too. From there it's a case of multiplying out and then combining those terms with G13 in them and those that don't.
So the would the answer be:

40981.10 = G13 - (G13 - α )*C3 - β - ( γ + (G13-C18)*C19)

40981.10 = X

X = G13 – G13*C3 - α*C3 - β - γ + G13*C19 – C18*C19
X = G13 – G13*C3 + G13*C19 - α*C3 - β - γ – C18*C19
X = G13(1 – C3 + C19) - α*C3 - β - γ – C18*C19
X + α*C3 + β + γ + C18*C19 = G13(1 – C3 + C19)

(X + α*C3 + β + γ + C18*C19 ) / (1 – C3 + C19) = G13

However if I put the values in I get 71594.13 = G13.

The answer should be 58965.52, G13 must equal to 58965.52.
So where am I going wrong in the arrangement??
 
  • #5
dipster307 said:
So the would the answer be:

40981.10 = G13 - (G13 - α )*C3 - β - ( γ + (G13-C18)*C19)

40981.10 = X

X = G13 – G13*C3 - α*C3 - β - γ + G13*C19 – C18*C19
X = G13 – G13*C3 + G13*C19 - α*C3 - β - γ – C18*C19
X = G13(1 – C3 + C19) - α*C3 - β - γ – C18*C19
X + α*C3 + β + γ + C18*C19 = G13(1 – C3 + C19)

(X + α*C3 + β + γ + C18*C19 ) / (1 – C3 + C19) = G13

However if I put the values in I get 71594.13 = G13.

The answer should be 58965.52, G13 must equal to 58965.52.
So where am I going wrong in the arrangement??

You've got some signs muddled up

40981.10 = G13 - (G13 - α )*C3 - β - ( γ + (G13-C18)*C19) -- original equation for reference.

X = G13 – G13*C3 - α*C3 - β - γ + G13*C19 C18*C19

^ I've put in red where you have the wrong sign.

For the first one you're distributing the minus sign across both terms.: -C3 * - $\alpha$ = C3*$\alpha$ .. I find it helps if you either imagine/put C3 at the front or act like you're distributing a -1 where there is just a minus sign

The second and third ones are a little trickier to spot. I started by eliminating the bracket inside (G13-C18) by expansion before applying the minus sign outside the ($\gamma$ + (G13-C18)*C19) brackets:If we just concentrate on this bit: -($\gamma$ + (G13-C18)*C19)

Expanding out the inside brackets: -($\gamma$ + G13*C19 - C18*C19)

Now it's easier to distribute the minus sign: -$\gamma$ - G13*C19 + C18*C19 (because I am multiplying two negatives)Brought back into the equation as a whole: X = G13 – G13*C3 + $\alpha$*C3 - $\beta$ - $\gamma$ - G13*C19 + C18*C19.

The rest of goes as you worked out but with the sign changes and you end up with: G13 = (X - $\alpha$*C3 + $\beta$ + $\gamma$ - C18*C19 ) / (1 – C3 - C19)

Unfortunately I am about 0.3 out (I get 58965.21) yet I cannot spot where I went wrong but hopefully someone else will be able to see it.

For reference the values I took:
$\alpha = 42475$
$\beta = 6874$
$\gamma = 4184.4$
C3 = 0.4
C18 = 42745
C19 = 0.02
 
  • #6
dipster307 said:
I an having problems trying arrange the formula below. I want to change it so the formula starts wuth "G13" equals to.

40981.10 = G13 - ( (((G13-B12-C8)*C3) + (B12*B3)) + (((C18-B9)*C5) + ((G13-C18)*C19)) )

The equation above is used in MS Excel, this is why you see the variable G13, B12 etc.
B12 = 34370
C8 = 8105
C3 = 0.4
B3 = 0.2
C18 = 42475
B9 = 7605
C5 = 0.12
C19 = 0.02
Can someone please help.

Hi dipster307, :)

Here is the result obtained using Maxima.

\[G13=\frac{10\,C3\,C8+\left( 10\,B9-10\,C18\right) \,C5+10\,B12\,C3+10\,C18\,C19-10\,B12\,B3-409811}{10\,C3+10\,C19-10}\]

Kind Regards,
Sudharaka.
 
  • #7
My working (open the spoiler if you want to look at a jumbled mess of variables):

\[40\,981.10 = \mathrm{G13} - \bigg[\Big[\big[(\mathrm{G13}-\mathrm{B12}-\mathrm{C8})\cdot\mathrm{C3}\big] + (\mathrm{B12}\cdot\mathrm{B3})\Big] + \Big[\big[(\mathrm{C18}-\mathrm{B9})\cdot\mathrm{C5}\big] + \big[(\mathrm{G13}-\mathrm{C18})\cdot\mathrm{C19}\big]\Big] \bigg]\]
\[\Rightarrow40\,981.10 = \mathrm{G13} - \Big[\big[(\mathrm{G13}-\mathrm{B12}-\mathrm{C8})\cdot\mathrm{C3}\big] + (\mathrm{B12}\cdot\mathrm{B3})\Big] - \Big[\big[(\mathrm{C18}-\mathrm{B9})\cdot\mathrm{C5}\big] + \big[(\mathrm{G13}-\mathrm{C18})\cdot\mathrm{C19}\big]\Big]\]
\[\Rightarrow40\,981.10 = \mathrm{G13} - \big[(\mathrm{G13}-\mathrm{B12}-\mathrm{C8})\cdot\mathrm{C3}\big] - (\mathrm{B12}\cdot\mathrm{B3}) - \big[(\mathrm{C18}-\mathrm{B9})\cdot\mathrm{C5}\big] - \big[(\mathrm{G13}-\mathrm{C18})\cdot\mathrm{C19}\big]\]
\[\Rightarrow40\,981.10 = \mathrm{G13} - \mathrm{G13}\cdot\mathrm{C3}+(\mathrm{B12}+ \mathrm{C8})\cdot\mathrm{C3} - (\mathrm{B12}\cdot\mathrm{B3}) - (\mathrm{C18}-\mathrm{B9})\cdot\mathrm{C5} - \mathrm{G13}\cdot\mathrm{C19}+\mathrm{C18}\cdot \mathrm{C19}\]
\[\Rightarrow40\,981.10 = \mathrm{G13} - \mathrm{G13} \cdot \mathrm{C3}+\mathrm{B12} \cdot \mathrm{C3} + \mathrm{C8}\cdot\mathrm{C3} - \mathrm{B12} \cdot \mathrm{B3} - \mathrm{C18} \cdot \mathrm{C5}+\mathrm{B9} \cdot \mathrm{C5} - \mathrm{G13} \cdot \mathrm{C19}+\mathrm{C18}\cdot \mathrm{C19}\]
\[\Rightarrow40\,981.10 = \mathrm{G13}(1 - \mathrm{C3} - \mathrm{C19})+\mathrm{B12} \cdot \mathrm{C3} + \mathrm{C8}\cdot\mathrm{C3} - \mathrm{B12} \cdot \mathrm{B3} - \mathrm{C18} \cdot \mathrm{C5}+\mathrm{B9} \cdot \mathrm{C5}+\mathrm{C18}\cdot \mathrm{C19}\]
\[\Rightarrow\mathrm{G13} = \frac{40\,981.10 - \mathrm{B12} \cdot \mathrm{C3} - \mathrm{C8}\cdot\mathrm{C3} + \mathrm{B12} \cdot \mathrm{B3} + \mathrm{C18} \cdot \mathrm{C5}-\mathrm{B9} \cdot \mathrm{C5}-\mathrm{C18}\cdot \mathrm{C19}}{1 - \mathrm{C3} - \mathrm{C19}}\]

And after comparing my solution with SuperSonic4's, they appear to be identical. And I get ~58965.52 in both cases, so I'm guessing that some number got entered incorrectly somewhere.
 
  • #8
Reckoner said:
My working (open the spoiler if you want to look at a jumbled mess of variables):

\[40\,981.10 = \mathrm{G13} - \bigg[\Big[\big[(\mathrm{G13}-\mathrm{B12}-\mathrm{C8})\cdot\mathrm{C3}\big] + (\mathrm{B12}\cdot\mathrm{B3})\Big] + \Big[\big[(\mathrm{C18}-\mathrm{B9})\cdot\mathrm{C5}\big] + \big[(\mathrm{G13}-\mathrm{C18})\cdot\mathrm{C19}\big]\Big] \bigg]\]
\[\Rightarrow40\,981.10 = \mathrm{G13} - \Big[\big[(\mathrm{G13}-\mathrm{B12}-\mathrm{C8})\cdot\mathrm{C3}\big] + (\mathrm{B12}\cdot\mathrm{B3})\Big] - \Big[\big[(\mathrm{C18}-\mathrm{B9})\cdot\mathrm{C5}\big] + \big[(\mathrm{G13}-\mathrm{C18})\cdot\mathrm{C19}\big]\Big]\]
\[\Rightarrow40\,981.10 = \mathrm{G13} - \big[(\mathrm{G13}-\mathrm{B12}-\mathrm{C8})\cdot\mathrm{C3}\big] - (\mathrm{B12}\cdot\mathrm{B3}) - \big[(\mathrm{C18}-\mathrm{B9})\cdot\mathrm{C5}\big] - \big[(\mathrm{G13}-\mathrm{C18})\cdot\mathrm{C19}\big]\]
\[\Rightarrow40\,981.10 = \mathrm{G13} - \mathrm{G13}\cdot\mathrm{C3}+(\mathrm{B12}+ \mathrm{C8})\cdot\mathrm{C3} - (\mathrm{B12}\cdot\mathrm{B3}) - (\mathrm{C18}-\mathrm{B9})\cdot\mathrm{C5} - \mathrm{G13}\cdot\mathrm{C19}+\mathrm{C18}\cdot \mathrm{C19}\]
\[\Rightarrow40\,981.10 = \mathrm{G13} - \mathrm{G13} \cdot \mathrm{C3}+\mathrm{B12} \cdot \mathrm{C3} + \mathrm{C8}\cdot\mathrm{C3} - \mathrm{B12} \cdot \mathrm{B3} - \mathrm{C18} \cdot \mathrm{C5}+\mathrm{B9} \cdot \mathrm{C5} - \mathrm{G13} \cdot \mathrm{C19}+\mathrm{C18}\cdot \mathrm{C19}\]
\[\Rightarrow40\,981.10 = \mathrm{G13}(1 - \mathrm{C3} - \mathrm{C19})+\mathrm{B12} \cdot \mathrm{C3} + \mathrm{C8}\cdot\mathrm{C3} - \mathrm{B12} \cdot \mathrm{B3} - \mathrm{C18} \cdot \mathrm{C5}+\mathrm{B9} \cdot \mathrm{C5}+\mathrm{C18}\cdot \mathrm{C19}\]
\[\Rightarrow\mathrm{G13} = \frac{40\,981.10 - \mathrm{B12} \cdot \mathrm{C3} - \mathrm{C8}\cdot\mathrm{C3} + \mathrm{B12} \cdot \mathrm{B3} + \mathrm{C18} \cdot \mathrm{C5}-\mathrm{B9} \cdot \mathrm{C5}-\mathrm{C18}\cdot \mathrm{C19}}{1 - \mathrm{C3} - \mathrm{C19}}\]

And after comparing my solution with SuperSonic4's, they appear to be identical. And I get ~58965.52 in both cases, so I'm guessing that some number got entered incorrectly somewhere.

Thanks everyone for helping out, I just need to keeping practicing my maths skills a bit more :)
 

FAQ: How can I rearrange this complex formula in Excel to solve for G13?

How do you solve for a specific variable in a multi-variable formula?

To solve for a specific variable in a multi-variable formula, you can use algebraic manipulation to isolate the variable you are looking for. This can involve using inverse operations to move terms around and eliminate other variables.

What is the purpose of arranging a formula?

The purpose of arranging a formula is to make it easier to solve for a specific variable or to manipulate the formula for a specific use. It can also help to identify relationships between different variables in the formula.

Can a formula be arranged in more than one way?

Yes, a formula can be arranged in multiple ways depending on the desired outcome. Some formulas may have multiple variables that can be solved for, allowing for different arrangements to be used.

How do you know if an arranged formula is correct?

To ensure the accuracy of an arranged formula, you can substitute the values of the variables into the formula and check that it produces the expected result. You can also use mathematical rules and principles to verify the arrangement of the formula.

Are there any shortcuts or tricks for arranging formulas?

There are certain patterns and techniques that can be used to make arranging formulas easier. These include using the distributive property, factoring, and combining like terms. However, the best approach will depend on the specific formula and variables involved.

Similar threads

Replies
5
Views
2K
Back
Top