- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! :)
I have also an other question about the proof of the Cholesky decomposition.
We write A like that:
$A=\begin{bmatrix}
d & u^{T}\\
u & H
\end{bmatrix}=\begin{bmatrix}
\sqrt d & 0\\
\frac{u}{\sqrt d} & I_{n-1}
\end{bmatrix}\begin{bmatrix}
1 & 0\\
0 & K
\end{bmatrix}\begin{bmatrix}
\sqrt d & \frac{u^{T}}{\sqrt{d}}\\
0 & I_{n-1}
\end{bmatrix}$
where $K=H-\frac{1}{d}uu^{T}$
and then we suppose that $K$ is symmetric and positive-definite,to use the assumption step(that is valid for $(n-1)x(n-1)$ symmetric and positive-definite matrices.
But...then I have to prove that $K$ is positive-definite.How can I do this?
I have also an other question about the proof of the Cholesky decomposition.
We write A like that:
$A=\begin{bmatrix}
d & u^{T}\\
u & H
\end{bmatrix}=\begin{bmatrix}
\sqrt d & 0\\
\frac{u}{\sqrt d} & I_{n-1}
\end{bmatrix}\begin{bmatrix}
1 & 0\\
0 & K
\end{bmatrix}\begin{bmatrix}
\sqrt d & \frac{u^{T}}{\sqrt{d}}\\
0 & I_{n-1}
\end{bmatrix}$
where $K=H-\frac{1}{d}uu^{T}$
and then we suppose that $K$ is symmetric and positive-definite,to use the assumption step(that is valid for $(n-1)x(n-1)$ symmetric and positive-definite matrices.
But...then I have to prove that $K$ is positive-definite.How can I do this?