- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
How can I show that the function
$$f=\left\{\begin{matrix}
0, \text{ if } x \in [0,1)\\
1, \text{ if } x \in (1,2]
\end{matrix}\right.$$
is continuous at $[0,1) \cup (1,2]$ using the definition of continuity?
A function $f:A \rightarrow \mathbb{R}$ is continuous at a point $x_0$:
$ \forall ε > 0$, $\exists δ > 0$ such that $\forall x \in A$ with
$$|x-x_0|<\delta \Rightarrow |f(x)-f(x_0)|<\epsilon$$
How can I use this to show the continuity at the whole interval?
How can I show that the function
$$f=\left\{\begin{matrix}
0, \text{ if } x \in [0,1)\\
1, \text{ if } x \in (1,2]
\end{matrix}\right.$$
is continuous at $[0,1) \cup (1,2]$ using the definition of continuity?
A function $f:A \rightarrow \mathbb{R}$ is continuous at a point $x_0$:
$ \forall ε > 0$, $\exists δ > 0$ such that $\forall x \in A$ with
$$|x-x_0|<\delta \Rightarrow |f(x)-f(x_0)|<\epsilon$$
How can I use this to show the continuity at the whole interval?