- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to show that:
$$\lfloor \frac{ \lfloor \frac{n}{a} \rfloor }{b} \rfloor = \lfloor \frac{n}{ab} \rfloor$$
That's what I have tried:
$$\lfloor \frac{n}{a} \rfloor =\max \{ m \in \mathbb{Z}: m \leq \frac{n}{a}\}$$
How can I do this? (Thinking)(Thinking)
I want to show that:
$$\lfloor \frac{ \lfloor \frac{n}{a} \rfloor }{b} \rfloor = \lfloor \frac{n}{ab} \rfloor$$
That's what I have tried:
$$\lfloor \frac{n}{a} \rfloor =\max \{ m \in \mathbb{Z}: m \leq \frac{n}{a}\}$$
- $a \mid n:$
$$\lfloor \frac{n}{a} \rfloor=\frac{n}{a}$$
Then:
$$\lfloor \frac{ \lfloor \frac{n}{a} \rfloor }{b} \rfloor = \lfloor \frac{\frac{n}{a}}{b}\rfloor =\lfloor \frac{n}{ab} \rfloor $$
- $a \nmid n:$
$$\lfloor \frac{n}{a} \rfloor=\frac{n-k}{a},0<k\leq n$$
$$\lfloor \frac{ \lfloor \frac{n}{a} \rfloor }{b} \rfloor= \lfloor \frac{n-k}{ab}\rfloor= \max \{ m \in \mathbb{Z}: m \leq \frac{n-k}{ab}\} (*) $$
How can I do this? (Thinking)(Thinking)