- #1
aruwin
- 208
- 0
Hi.
Is there a short way to calculate real integration? I tried it but it looks so tedious. I attached the question so please refer to that. I am stuck with no.1, by the way.
Here is my attempt:
∫_0^(2π) dx/(13 - 5*sin(x))
let u = tan(x/2) which means x/2 = arctan(u) which means x = 2*arctan(u);
let du = sec^2(x/2)/2 dx
∫ 2*sec^2(x/2) dx/[2*sec^2(x/2)*(13 - 5*sin(x))]
∫ 2 du/[sec^2(2*arctan(u)/2)*(13 - 5*sin(2*arctan(u)))]
∫ 2*cos^2(arctan(u)) du/[13 - 5*sin(2*arctan(u))]
∫ 2*cos^2(arctan(u)) du/[13 - 5*2*sin(arctan(u))*cos(arctan(u))]
adjacent = 1; opposite = u; hypotenuse = sqrt((u^2) + 1)
∫ 2*[(1/sqrt((u^2) + 1))^2] du / [13 - 10*(u/sqrt((u^2) + 1))*1/sqrt((u^2) + 1)]
∫ [2/((u^2) + 1)] du / [13 - (10u/((u^2) + 1))]
∫ 2 du / {[13 - (10u/((u^2) + 1))]*[(u^2) + 1]}
∫ 2 du / {13*[(u^2) + (1)] - (10u)}
∫ 2 du / [13*(u^2) + (13) - (10u)]
∫ 2 du / [13*(u^2) - (10u) + (13)]
∫ (2/13) du / [(u^2) - (10/13*u) + (1)]
∫ (2/13) du / [(u^2) - (10/13*u) + (1)]
p = (u^2) - (10/13*u) + 1
p + (25/169) = (u^2) - 10/13*u + 1 + (25/169)
p + (25/169) = ((u - 5/13)^2) + 1
p = ((u - 5/13)^2) + (144/169)
∫ (2/13) du / {[(u - (5/13))^2] + [(12/13)^2]}
b = u - 5/13; db = du
∫ (2/13) db / [(b^2) + ((12/13)^2)]
a = 12/13; b = 12/13*tan(t); db = 12/13*sec^2(t) dt
∫ (2/13) [12/13*sec^2(t) dt] / [((12/13)^2)*tan^2(t) + ((12/13)^2)]
∫ ((13/12)^2) * (2/13) * (12/13) * sec^2(t) dt /[tan^2(t) + 1]
∫ ((13/12)^2) * (2/13) * (12/13) dt = ∫ dt/6 = t/6
b = 12/13*tan(t) as t = arctan(13b/12)
arctan(13b/12)/6 as b = u - 5/13
arctan[13*(u - 5/13)/12]/6 = 1/6*arctan((13u - 5)/12) as u = tan(x/2) as x = 2*arctan(u)
NOT SURE WHAT THE FINAL ANSWER IS.
2) ∫_-∞^∞ dx/((x^2) + 4)^2
a = 2; x = 2*tan(t); dx = 2*sec^2(t) dt;
∫ 2*sec^2(t) dt/(4*tan^2(t) + 4)^2
1/8 * ∫ sec^2(t) dt/(sec^4(t))
1/8 * ∫ cos^2(t) dt
1/8 * ∫ (1 - sin^2(t)) dt
u = sin(t); du = cos(t) dt; dv = -sin(t); v = cos(t)
t + sin(t)*cos(t) - ∫cos^2(t) = ∫cos^2(t)
t + sin(t)*cos(t) = 2*∫cos^2(t)
[t + sin(t)*cos(t)]/16
x/2 = tan(t) as t = arctan(x/2)
[arctan(x/2) + sin(arctan(x/2))*cos(arctan(x/2))]/16
adjacent = x; opposite = 2; hypotenuse = sqrt((x^2) + 4)
[arctan(x/2) + (2/sqrt((x^2) + 4))*(x/sqrt((x^2) + 4))]/16
[arctan(x/2) + (2x/((x^2) + 4))]/16
limit x->∞ [arctan(x/2) + (2x/((x^2) + 4))]/16
limit x->∞ [(π/2) + 2/(2x)]/16 = π/32
limit x->-∞ [arctan(x/2) + (2x/((x^2) + 4))]/16
limit x->-∞ [(π/2) + 2/(2x)]/16 = -π/32
Final answer is π/16
Is there a short way to calculate real integration? I tried it but it looks so tedious. I attached the question so please refer to that. I am stuck with no.1, by the way.
Here is my attempt:
∫_0^(2π) dx/(13 - 5*sin(x))
let u = tan(x/2) which means x/2 = arctan(u) which means x = 2*arctan(u);
let du = sec^2(x/2)/2 dx
∫ 2*sec^2(x/2) dx/[2*sec^2(x/2)*(13 - 5*sin(x))]
∫ 2 du/[sec^2(2*arctan(u)/2)*(13 - 5*sin(2*arctan(u)))]
∫ 2*cos^2(arctan(u)) du/[13 - 5*sin(2*arctan(u))]
∫ 2*cos^2(arctan(u)) du/[13 - 5*2*sin(arctan(u))*cos(arctan(u))]
adjacent = 1; opposite = u; hypotenuse = sqrt((u^2) + 1)
∫ 2*[(1/sqrt((u^2) + 1))^2] du / [13 - 10*(u/sqrt((u^2) + 1))*1/sqrt((u^2) + 1)]
∫ [2/((u^2) + 1)] du / [13 - (10u/((u^2) + 1))]
∫ 2 du / {[13 - (10u/((u^2) + 1))]*[(u^2) + 1]}
∫ 2 du / {13*[(u^2) + (1)] - (10u)}
∫ 2 du / [13*(u^2) + (13) - (10u)]
∫ 2 du / [13*(u^2) - (10u) + (13)]
∫ (2/13) du / [(u^2) - (10/13*u) + (1)]
∫ (2/13) du / [(u^2) - (10/13*u) + (1)]
p = (u^2) - (10/13*u) + 1
p + (25/169) = (u^2) - 10/13*u + 1 + (25/169)
p + (25/169) = ((u - 5/13)^2) + 1
p = ((u - 5/13)^2) + (144/169)
∫ (2/13) du / {[(u - (5/13))^2] + [(12/13)^2]}
b = u - 5/13; db = du
∫ (2/13) db / [(b^2) + ((12/13)^2)]
a = 12/13; b = 12/13*tan(t); db = 12/13*sec^2(t) dt
∫ (2/13) [12/13*sec^2(t) dt] / [((12/13)^2)*tan^2(t) + ((12/13)^2)]
∫ ((13/12)^2) * (2/13) * (12/13) * sec^2(t) dt /[tan^2(t) + 1]
∫ ((13/12)^2) * (2/13) * (12/13) dt = ∫ dt/6 = t/6
b = 12/13*tan(t) as t = arctan(13b/12)
arctan(13b/12)/6 as b = u - 5/13
arctan[13*(u - 5/13)/12]/6 = 1/6*arctan((13u - 5)/12) as u = tan(x/2) as x = 2*arctan(u)
NOT SURE WHAT THE FINAL ANSWER IS.
2) ∫_-∞^∞ dx/((x^2) + 4)^2
a = 2; x = 2*tan(t); dx = 2*sec^2(t) dt;
∫ 2*sec^2(t) dt/(4*tan^2(t) + 4)^2
1/8 * ∫ sec^2(t) dt/(sec^4(t))
1/8 * ∫ cos^2(t) dt
1/8 * ∫ (1 - sin^2(t)) dt
u = sin(t); du = cos(t) dt; dv = -sin(t); v = cos(t)
t + sin(t)*cos(t) - ∫cos^2(t) = ∫cos^2(t)
t + sin(t)*cos(t) = 2*∫cos^2(t)
[t + sin(t)*cos(t)]/16
x/2 = tan(t) as t = arctan(x/2)
[arctan(x/2) + sin(arctan(x/2))*cos(arctan(x/2))]/16
adjacent = x; opposite = 2; hypotenuse = sqrt((x^2) + 4)
[arctan(x/2) + (2/sqrt((x^2) + 4))*(x/sqrt((x^2) + 4))]/16
[arctan(x/2) + (2x/((x^2) + 4))]/16
limit x->∞ [arctan(x/2) + (2x/((x^2) + 4))]/16
limit x->∞ [(π/2) + 2/(2x)]/16 = π/32
limit x->-∞ [arctan(x/2) + (2x/((x^2) + 4))]/16
limit x->-∞ [(π/2) + 2/(2x)]/16 = -π/32
Final answer is π/16
Attachments
Last edited: