How Can I Simplify Real Integration Calculations?

In summary: ∫ 2*cos^2(arctan(u)) du/[13 - 5*2*sin(arctan(u))*cos(arctan(u))] adjacent = 1; opposite = u; hypotenuse = sqrt((u^2) + 1) ∫ 2*[(1/sqrt((u^2) + 1))^2] du / [13 - 10*(u/sqrt((u^2) + 1))*1/sqrt((u^2) + 1)] ∫ [2/((u^2) + 1)] du / [13 - (10u/((u^2) + 1))] ∫ 2 du
  • #1
aruwin
208
0
Hi.
Is there a short way to calculate real integration? I tried it but it looks so tedious. I attached the question so please refer to that. I am stuck with no.1, by the way.
Here is my attempt:

∫_0^(2π) dx/(13 - 5*sin(x))


let u = tan(x/2) which means x/2 = arctan(u) which means x = 2*arctan(u);
let du = sec^2(x/2)/2 dx

∫ 2*sec^2(x/2) dx/[2*sec^2(x/2)*(13 - 5*sin(x))]

∫ 2 du/[sec^2(2*arctan(u)/2)*(13 - 5*sin(2*arctan(u)))]

∫ 2*cos^2(arctan(u)) du/[13 - 5*sin(2*arctan(u))]

∫ 2*cos^2(arctan(u)) du/[13 - 5*2*sin(arctan(u))*cos(arctan(u))]

adjacent = 1; opposite = u; hypotenuse = sqrt((u^2) + 1)

∫ 2*[(1/sqrt((u^2) + 1))^2] du / [13 - 10*(u/sqrt((u^2) + 1))*1/sqrt((u^2) + 1)]

∫ [2/((u^2) + 1)] du / [13 - (10u/((u^2) + 1))]

∫ 2 du / {[13 - (10u/((u^2) + 1))]*[(u^2) + 1]}

∫ 2 du / {13*[(u^2) + (1)] - (10u)}

∫ 2 du / [13*(u^2) + (13) - (10u)]

∫ 2 du / [13*(u^2) - (10u) + (13)]

∫ (2/13) du / [(u^2) - (10/13*u) + (1)]

∫ (2/13) du / [(u^2) - (10/13*u) + (1)]

p = (u^2) - (10/13*u) + 1

p + (25/169) = (u^2) - 10/13*u + 1 + (25/169)

p + (25/169) = ((u - 5/13)^2) + 1

p = ((u - 5/13)^2) + (144/169)

∫ (2/13) du / {[(u - (5/13))^2] + [(12/13)^2]}

b = u - 5/13; db = du

∫ (2/13) db / [(b^2) + ((12/13)^2)]

a = 12/13; b = 12/13*tan(t); db = 12/13*sec^2(t) dt

∫ (2/13) [12/13*sec^2(t) dt] / [((12/13)^2)*tan^2(t) + ((12/13)^2)]

∫ ((13/12)^2) * (2/13) * (12/13) * sec^2(t) dt /[tan^2(t) + 1]

∫ ((13/12)^2) * (2/13) * (12/13) dt = ∫ dt/6 = t/6

b = 12/13*tan(t) as t = arctan(13b/12)

arctan(13b/12)/6 as b = u - 5/13

arctan[13*(u - 5/13)/12]/6 = 1/6*arctan((13u - 5)/12) as u = tan(x/2) as x = 2*arctan(u)

NOT SURE WHAT THE FINAL ANSWER IS.


2) ∫_-∞^∞ dx/((x^2) + 4)^2

a = 2; x = 2*tan(t); dx = 2*sec^2(t) dt;

∫ 2*sec^2(t) dt/(4*tan^2(t) + 4)^2

1/8 * ∫ sec^2(t) dt/(sec^4(t))

1/8 * ∫ cos^2(t) dt

1/8 * ∫ (1 - sin^2(t)) dt

u = sin(t); du = cos(t) dt; dv = -sin(t); v = cos(t)

t + sin(t)*cos(t) - ∫cos^2(t) = ∫cos^2(t)

t + sin(t)*cos(t) = 2*∫cos^2(t)

[t + sin(t)*cos(t)]/16

x/2 = tan(t) as t = arctan(x/2)

[arctan(x/2) + sin(arctan(x/2))*cos(arctan(x/2))]/16

adjacent = x; opposite = 2; hypotenuse = sqrt((x^2) + 4)

[arctan(x/2) + (2/sqrt((x^2) + 4))*(x/sqrt((x^2) + 4))]/16

[arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->∞ [arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->∞ [(π/2) + 2/(2x)]/16 = π/32

limit x->-∞ [arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->-∞ [(π/2) + 2/(2x)]/16 = -π/32

Final answer is π/16
 

Attachments

  • 33333.jpeg
    33333.jpeg
    10.6 KB · Views: 103
Last edited:
Physics news on Phys.org
  • #2
aruwin said:
2) ∫_-∞^∞ dx/((x^2) + 4)^2

a = 2; x = 2*tan(t); dx = 2*sec^2(t) dt;

∫ 2*sec^2(t) dt/(4*tan^2(t) + 4)^2

1/8 * ∫ sec^2(t) dt/(sec^4(t))

1/8 * ∫ cos^2(t) dt

I agree with you up to here, now $\displaystyle \begin{align*} \cos^2{(t)} \equiv \frac{1}{2} + \frac{1}{2}\cos{(2t)} \end{align*}$ so

$\displaystyle \begin{align*} \int{ \cos^2{(t)}\,\mathrm{d}t} &= \int{ \frac{1}{2} + \frac{1}{2}\cos{(2t)}\,\mathrm{d}t} \\ &= \frac{1}{2}t + \frac{1}{4}\sin{(2t)} + C \\ &= \frac{1}{2}t + \frac{1}{2}\sin{(t)}\cos{(t)} \\ &= \frac{1}{2}t + \frac{1}{2}\tan{(t)}\cos^2{(t)} + C \\ &= \frac{1}{2}t + \frac{\tan{(t)}}{2\sec^2{(t)}} + C \\ &= \frac{1}{2}t + \frac{\tan{(t)}}{2 \left[ 1 + \tan^2{(t)} \right] } + C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{\frac{x}{2}}{2 \left[ 1 + \left( \frac{x}{2} \right) ^2 \right] } + C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{\frac{x}{2}}{ 2 \left( 1 + \frac{x^2}{4} \right) } +C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{x}{4 + x^2} + C \end{align*}$

Anyway, since the integrand is an even function, that means

$\displaystyle \begin{align*} \int_{-\infty}^{\infty}{ \frac{\mathrm{d}x}{ \left( x^2 + 4 \right) ^2 } } &= 2\int_0^{\infty}{ \frac{\mathrm{d}x}{ \left( x^2 + 4 \right) ^2 } } \\ &= 2 \lim_{\epsilon \to \infty}{ \left[ \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{x}{4 + x^2} \right] _0^{\epsilon} } \\ &= \frac{\pi}{2} \end{align*}$
 
  • #3
Prove It said:
I agree with you up to here, now $\displaystyle \begin{align*} \cos^2{(t)} \equiv \frac{1}{2} + \frac{1}{2}\cos{(2t)} \end{align*}$ so

$\displaystyle \begin{align*} \int{ \cos^2{(t)}\,\mathrm{d}t} &= \int{ \frac{1}{2} + \frac{1}{2}\cos{(2t)}\,\mathrm{d}t} \\ &= \frac{1}{2}t + \frac{1}{4}\sin{(2t)} + C \\ &= \frac{1}{2}t + \frac{1}{2}\sin{(t)}\cos{(t)} \\ &= \frac{1}{2}t + \frac{1}{2}\tan{(t)}\cos^2{(t)} + C \\ &= \frac{1}{2}t + \frac{\tan{(t)}}{2\sec^2{(t)}} + C \\ &= \frac{1}{2}t + \frac{\tan{(t)}}{2 \left[ 1 + \tan^2{(t)} \right] } + C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{\frac{x}{2}}{2 \left[ 1 + \left( \frac{x}{2} \right) ^2 \right] } + C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{\frac{x}{2}}{ 2 \left( 1 + \frac{x^2}{4} \right) } +C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{x}{4 + x^2} + C \end{align*}$

Anyway, since the integrand is an even function, that means

$\displaystyle \begin{align*} \int_{-\infty}^{\infty}{ \frac{\mathrm{d}x}{ \left( x^2 + 4 \right) ^2 } } &= 2\int_0^{\infty}{ \frac{\mathrm{d}x}{ \left( x^2 + 4 \right) ^2 } } \\ &= 2 \lim_{\epsilon \to \infty}{ \left[ \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{x}{4 + x^2} \right] _0^{\epsilon} } \\ &= \frac{\pi}{2} \end{align*}$
What about no. 1? What is the final answer?
 
  • #4
aruwin said:
What about no. 1? What is the final answer?

You're welcome >_<
 
  • #5
Prove It said:
You're welcome >_<

Opps, sorry sorry! Thank you! I was so desperate about the answer that I forgot my manners. Forgive me.
 
  • #6
aruwin said:
Hi.
Is there a short way to calculate real integration? I tried it but it looks so tedious. I attached the question so please refer to that. I am stuck with no.1, by the way.
Here is my attempt:

∫_0^(2π) dx/(13 - 5*sin(x))


let u = tan(x/2) which means x/2 = arctan(u) which means x = 2*arctan(u);
let du = sec^2(x/2)/2 dx

∫ 2*sec^2(x/2) dx/[2*sec^2(x/2)*(13 - 5*sin(x))]

∫ 2 du/[sec^2(2*arctan(u)/2)*(13 - 5*sin(2*arctan(u)))]

∫ 2*cos^2(arctan(u)) du/[13 - 5*sin(2*arctan(u))]

∫ 2*cos^2(arctan(u)) du/[13 - 5*2*sin(arctan(u))*cos(arctan(u))]

adjacent = 1; opposite = u; hypotenuse = sqrt((u^2) + 1)

∫ 2*[(1/sqrt((u^2) + 1))^2] du / [13 - 10*(u/sqrt((u^2) + 1))*1/sqrt((u^2) + 1)]

∫ [2/((u^2) + 1)] du / [13 - (10u/((u^2) + 1))]

∫ 2 du / {[13 - (10u/((u^2) + 1))]*[(u^2) + 1]}

∫ 2 du / {13*[(u^2) + (1)] - (10u)}

∫ 2 du / [13*(u^2) + (13) - (10u)]

∫ 2 du / [13*(u^2) - (10u) + (13)]

∫ (2/13) du / [(u^2) - (10/13*u) + (1)]

∫ (2/13) du / [(u^2) - (10/13*u) + (1)]

p = (u^2) - (10/13*u) + 1

p + (25/169) = (u^2) - 10/13*u + 1 + (25/169)

p + (25/169) = ((u - 5/13)^2) + 1

p = ((u - 5/13)^2) + (144/169)

∫ (2/13) du / {[(u - (5/13))^2] + [(12/13)^2]}

b = u - 5/13; db = du

∫ (2/13) db / [(b^2) + ((12/13)^2)]

a = 12/13; b = 12/13*tan(t); db = 12/13*sec^2(t) dt

∫ (2/13) [12/13*sec^2(t) dt] / [((12/13)^2)*tan^2(t) + ((12/13)^2)]

∫ ((13/12)^2) * (2/13) * (12/13) * sec^2(t) dt /[tan^2(t) + 1]

∫ ((13/12)^2) * (2/13) * (12/13) dt = ∫ dt/6 = t/6

b = 12/13*tan(t) as t = arctan(13b/12)

arctan(13b/12)/6 as b = u - 5/13

arctan[13*(u - 5/13)/12]/6 = 1/6*arctan((13u - 5)/12) as u = tan(x/2) as x = 2*arctan(u)

NOT SURE WHAT THE FINAL ANSWER IS.


2) ∫_-∞^∞ dx/((x^2) + 4)^2

a = 2; x = 2*tan(t); dx = 2*sec^2(t) dt;

∫ 2*sec^2(t) dt/(4*tan^2(t) + 4)^2

1/8 * ∫ sec^2(t) dt/(sec^4(t))

1/8 * ∫ cos^2(t) dt

1/8 * ∫ (1 - sin^2(t)) dt

u = sin(t); du = cos(t) dt; dv = -sin(t); v = cos(t)

t + sin(t)*cos(t) - ∫cos^2(t) = ∫cos^2(t)

t + sin(t)*cos(t) = 2*∫cos^2(t)

[t + sin(t)*cos(t)]/16

x/2 = tan(t) as t = arctan(x/2)

[arctan(x/2) + sin(arctan(x/2))*cos(arctan(x/2))]/16

adjacent = x; opposite = 2; hypotenuse = sqrt((x^2) + 4)

[arctan(x/2) + (2/sqrt((x^2) + 4))*(x/sqrt((x^2) + 4))]/16

[arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->∞ [arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->∞ [(π/2) + 2/(2x)]/16 = π/32

limit x->-∞ [arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->-∞ [(π/2) + 2/(2x)]/16 = -π/32

Final answer is π/16

If you're going to make the substitution $\displaystyle \begin{align*} u = \tan{ \left( \frac{x}{2} \right) } \implies \mathrm{d}u = \frac{1}{2}\sec^2{ \left( \frac{x}{2} \right) } \end{align*}$ then

$\displaystyle \begin{align*} \sin{(x)} &= 2\sin{ \left( \frac{x}{2} \right) } \cos{ \left( \frac{x}{2} \right) } \\ &= 2 \tan{ \left( \frac{x}{2} \right) } \cos^2{ \left( \frac{x}{2} \right) } \\ &= \frac{2\tan{ \left( \frac{x}{2} \right) } }{\sec^2{ \left( \frac{x}{2} \right) } } \\ &= \frac{2\tan{ \left( \frac{x}{2} \right) } }{ 1 + \tan^2{ \left( \frac{x}{2}\right) } } \\ &= \frac{2u}{1 + u^2} \end{align*}$

and so the integral is

$\displaystyle \begin{align*} \int{ \frac{\mathrm{d}x}{13 - 5\sin{(x)}}} &= \int{ \frac{ \frac{1}{2}\sec^2{ \left( \frac{x}{2} \right) }\,\mathrm{d}x}{ \frac{1}{2}\sec^2{ \left( \frac{x}{2} \right) } \left[ 13 - 5\sin{(x)} \right] } } \\ &= \int{ \frac{\mathrm{d}u}{\frac{1}{2} \left[ 1 + \tan^2{ \left( \frac{x}{2} \right) } \right] \left\{ 13 - 5 \left[ \frac{2u}{1 + u^2} \right] \right\} } } \\ &= 2\int{ \frac{\mathrm{d}u}{\left( 1 + u^2 \right) \left( 13 - \frac{10u}{1 + u^2} \right) } } \\ &= 2\int{ \frac{\mathrm{d}u}{ 13u^2 - 10u + 13} } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{u^2 - \frac{10}{13}u + 1 } } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{ u^2 - \frac{10}{13}u + \left( -\frac{5}{13} \right) ^2 - \left( -\frac{5}{13} \right) ^2 + 1 } } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{ \left( u - \frac{5}{13} \right) ^2 - \frac{25}{169} + \frac{169}{169}} } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{ \left( u - \frac{5}{13} \right) ^2 + \frac{144}{169} } } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{ \left( u - \frac{5}{13} \right) ^2 + \left( \frac{12}{13} \right) ^2 }} \end{align*}$

Now make the substitution $\displaystyle \begin{align*} u - \frac{5}{13} = \frac{12}{13}\tan{ \left( \theta \right) } \implies \mathrm{d}u = \frac{12}{13} \sec^2{ \left( \theta \right) }\,\mathrm{d}\theta \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{2}{13} \int{ \frac{\mathrm{d}u}{ \left( u -\frac{5}{13} \right) ^2 + \left( \frac{12}{13} \right) ^2 } } &= \frac{2}{13} \int{ \frac{ \frac{12}{13}\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta }{ \left[ \frac{12}{13} \tan{\left( \theta \right) } \right] ^2 + \left( \frac{12}{13} \right) ^2 } } \\ &= \frac{2}{13} \int{ \frac{ \frac{12}{13} \sec^2{ \left( \theta \right) } \,\mathrm{d}\theta }{ \left( \frac{12}{13} \right) ^2 \sec^2{ \left( \theta \right) } } } \\ &= \frac{1}{6} \int{ \mathrm{d}\theta } \\ &= \frac{1}{6}\theta + C \\ &= \frac{1}{6} \arctan{ \left( \frac{13u - 5}{12} \right) } + C \\ &= \frac{1}{6} \arctan{ \left[ \frac{13 \tan{ \left( \frac{x}{2} \right) } - 5 }{12} \right] } + C \end{align*}$

Thus

$\displaystyle \begin{align*} \int_0^{2\pi}{ \frac{\mathrm{d}x}{ 13 - 5\sin{(x)} } } &= \frac{1}{6} \left\{ \arctan{ \left[ \frac{13\tan{\left( \frac{x}{2} \right) } - 5}{12} \right] } \right\}_0^{2\pi} \\ &= \frac{1}{6} \left\{ \arctan{ \left[ \frac{13\tan{ \left( \pi \right) } - 5}{12} \right] } - \arctan{ \left[ \frac{13\tan{ (0) } - 5}{12} \right] } \right\} \\ &= \frac{1}{6} \left[ \arctan{ \left( -\frac{5}{12} \right) } - \arctan{ \left( -\frac{5}{12} \right) } \right] \\ &= 0 \end{align*}$
 
  • #7
It may be that some objection is to move to the 'solution' $\displaystyle \int_{0}^{2\ \pi} \frac{d \theta}{13 - 5\ \sin \theta} =0$. It is easy to see that in $[0,2\ \pi]$ is $\displaystyle \frac{1}{13 - 5\ \sin \theta} > 0$...

Kind regards

$\chi$ $\sigma$
 
  • #8
The procedure for solving the definite integral...

$\displaystyle I=\int_{0}^{2\ \pi} \frac{d \theta}{13 - 5\ \sin \theta}\ (1)$

... through the substition $\displaystyle u=\tan \frac{\theta}{2}$ is correct. Taking into account that for $\theta$ going from 0 to $2\ \pi$ u goes from $- \infty$ to $+ \infty$ we arrive at the integral...

$\displaystyle I = 2\ \int_{- \infty}^{+ \infty} \frac{d u}{13 - 10\ u + 13\ u^{2}} = \frac{1}{6}\ \lim_{l \rightarrow \infty} |\tan^{-1} \frac{13\ u - 5}{12}|_{- l}^{+ l} = \frac{\pi}{6}\ (2)$

Kind regards

$\chi$ $\sigma$
 
  • #9
chisigma said:
The procedure for solving the definite integral...

$\displaystyle I=\int_{0}^{2\ \pi} \frac{d \theta}{13 - 5\ \sin \theta}\ (1)$

... through the substition $\displaystyle u=\tan \frac{\theta}{2}$ is correct. Taking into account that for $\theta$ going from 0 to $2\ \pi$ u goes from $- \infty$ to $+ \infty$ we arrive at the integral...

$\displaystyle I = 2\ \int_{- \infty}^{+ \infty} \frac{d u}{13 - 10\ u + 13\ u^{2}} = \frac{1}{6}\ \lim_{l \rightarrow \infty} |\tan^{-1} \frac{13\ u - 5}{12}|_{- l}^{+ l} = \frac{\pi}{6}\ (2)$

Kind regards

$\chi$ $\sigma$

But surely $\displaystyle \begin{align*} \tan{ \left( \frac{0}{2} \right) } = 0 \end{align*}$, not $\displaystyle \begin{align*} \to \infty \end{align*}$
 
  • #10
chisigma said:
The procedure for solving the definite integral...

$\displaystyle I=\int_{0}^{2\ \pi} \frac{d \theta}{13 - 5\ \sin \theta}\ (1)$

... through the substition $\displaystyle u=\tan \frac{\theta}{2}$ is correct. Taking into account that for $\theta$ going from 0 to $2\ \pi$ u goes from $- \infty$ to $+ \infty$ we arrive at the integral...

$\displaystyle I = 2\ \int_{- \infty}^{+ \infty} \frac{d u}{13 - 10\ u + 13\ u^{2}} = \frac{1}{6}\ \lim_{l \rightarrow \infty} |\tan^{-1} \frac{13\ u - 5}{12}|_{- l}^{+ l} = \frac{\pi}{6}\ (2)$

Kind regards

$\chi$ $\sigma$

The result can be obtained in faster way using the general formula reported in...

http://mathhelpboards.com/calculus-10/integration-help-11145.html#post51926

... that I suggest memorizing ...

$\displaystyle \int \frac{dx}{a + b\ x + c\ x^{2}} = \frac{2}{\sqrt{\Delta}}\ \tan^{-1} \frac{b + 2\ c\ x}{\sqrt{\Delta}},\ \Delta = 4\ a\ c - b^{2}\ (1) $

Kind regards

$\chi$ $\sigma$
 
  • #11
Prove It said:
But surely $\displaystyle \begin{align*} \tan{ \left( \frac{0}{2} \right) } = 0 \end{align*}$, not $\displaystyle \begin{align*} \to \infty \end{align*}$
As $\theta$ goes from $0$ to $2\pi$, $u = \tan\frac\theta2$ goes from $0$ to $\infty$ (in the first half of the interval) and then from $-\infty$ to $0$ (in the second half of the interval). So as $\theta$ goes through the entire interval, $u$ covers the whole real line from $-\infty$ to $\infty$.
 
  • #12
What about Residue Theorem? I think we can use that for this integration.
 
  • #13
aruwin said:
What about Residue Theorem? I think we can use that for this integration.

Which function and contour would you choose?
 
  • #14
aruwin said:
What about Residue Theorem? I think we can use that for this integration.
Yes, you can use that method. You need to make the substitution $z = e^{ix} = \cos x + i \sin x$. Then $dz = ie^{ix}dx = iz\,dz$ so that $dx = \frac {dz}{iz}.$ Also, $z^{-1} = \cos x - i \sin x$, so that $\sin x = \frac1{2i}{z-z^{-1}}.$ The integral then goes round the unit circle $C$ and is equal to $$\begin{aligned} \oint_C \frac1{13-\frac5{2i}(z-z^{-1})}\,\frac{dz}{iz}\ &= \oint_C \frac{2\,dz}{26iz - 5z(z-z^{-1})} \\ &= \oint_C \frac{-2\,dz}{5z^2 - 26iz - 5} \\ &= \oint_C \frac{-2\,dz}{(5z-i)(z-5i)}.\end{aligned}$$ By the residue theorem, that last integral is equal to $2\pi i$ times the residue at the only pole inside the contour, which is at $z = i/5.$ The residue there is $\dfrac{-2i}{24}$ and that gives the value of the integral as $\dfrac{\pi}6$ (in agreement with chisigma's result at comment #8 above).

You can also do the other integral \(\displaystyle \int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^2}\) by contour integration. This time, integrate $\dfrac1{(z^2+4)^2}$ around a contour consisting of the interval $[-R,R]$ of the $x$-axis followed by a semicircle of radius $R$ in the upper half-plane, and then let $R\to\infty$.
 
Last edited:

FAQ: How Can I Simplify Real Integration Calculations?

What is real integration?

Real integration is a mathematical process used to find the area under a curve in a given interval. It involves splitting the area into smaller and smaller rectangles and calculating their individual areas, then summing them up to get an approximation of the total area.

What is the difference between real integration and numerical integration?

Real integration involves finding an exact solution to the area under a curve, while numerical integration uses various approximation methods to estimate the area. Real integration provides a more accurate result, but can be more time-consuming and difficult to calculate.

What are the different methods of calculating real integration?

The most commonly used methods for calculating real integration are the Riemann sum, the Trapezoidal rule, and Simpson's rule. These methods involve dividing the area under the curve into smaller sections and using mathematical formulas to approximate their areas and sum them up.

What is the purpose of calculating real integration?

The main purpose of calculating real integration is to find the area under a curve, which has many real-world applications such as calculating volumes, finding average values of functions, and determining probabilities in statistics and physics.

What are some common challenges when calculating real integration?

Some common challenges when calculating real integration include choosing the appropriate method to use, dealing with complex functions or intervals, and ensuring accuracy in the calculations. It can also be challenging to interpret the results and understand their significance in real-world scenarios.

Similar threads

Replies
2
Views
788
Replies
6
Views
1K
Replies
29
Views
2K
Replies
15
Views
1K
Replies
8
Views
584
Replies
22
Views
2K
Replies
8
Views
1K
Replies
10
Views
805
Replies
6
Views
2K
Replies
6
Views
2K
Back
Top