- #1
trixitium
- 7
- 0
Hello,
I would like to solve this exercise in the best way as possible. I solved using the most trivial way and I am in doubt if are there some better way to solve.
Simplify:
[itex]\left(x + \frac{1}{x} \right)\left(y + \frac{1}{y} \right) + \left(x - \frac{1}{x} \right)\left(y - \frac{1}{y} \right)[/itex]
[itex]\left(x + \frac{1}{x} \right)\left(y + \frac{1}{y} \right) + \left(x - \frac{1}{x} \right)\left(y - \frac{1}{y} \right) \ = [/itex]
[itex] \left(\frac{x^2 + 1}{x} \right)\left(\frac{y^2 + 1}{y} \right)+ \left(\frac{x^2 - 1}{x} \right)\left(\frac{y^2 - 1}{y} \right) \ = [/itex]
[itex] \frac{1}{xy} \left( \left(x^2+1 \right) \left(y^2 + 1\right)+ \left(x^2 - 1\right) \left(y^2 - 1 \right) \right) \ = \ ... \ = [/itex]
[itex] \frac{2(x^2y^2 + 1)}{xy}[/itex]
Thanks!
I would like to solve this exercise in the best way as possible. I solved using the most trivial way and I am in doubt if are there some better way to solve.
Homework Statement
Simplify:
Homework Equations
[itex]\left(x + \frac{1}{x} \right)\left(y + \frac{1}{y} \right) + \left(x - \frac{1}{x} \right)\left(y - \frac{1}{y} \right)[/itex]
The Attempt at a Solution
[itex]\left(x + \frac{1}{x} \right)\left(y + \frac{1}{y} \right) + \left(x - \frac{1}{x} \right)\left(y - \frac{1}{y} \right) \ = [/itex]
[itex] \left(\frac{x^2 + 1}{x} \right)\left(\frac{y^2 + 1}{y} \right)+ \left(\frac{x^2 - 1}{x} \right)\left(\frac{y^2 - 1}{y} \right) \ = [/itex]
[itex] \frac{1}{xy} \left( \left(x^2+1 \right) \left(y^2 + 1\right)+ \left(x^2 - 1\right) \left(y^2 - 1 \right) \right) \ = \ ... \ = [/itex]
[itex] \frac{2(x^2y^2 + 1)}{xy}[/itex]
Thanks!