- #1
karush
Gold Member
MHB
- 3,269
- 5
mnt{w.8.4.5} nmh{1000}
$\displaystyle \int\sin^2 \left({x}\right) \ dx
= \frac{x}{2}-\frac{\sin\left({2x }\right)}{4}+C $
As given by a table reference
Integral calculator uses reduction formula to solve this
But this is an exercise following integration by parts so..
$\displaystyle \int\sin^2 \left({x}\right) \ dx
\implies \int\sin\left({x}\right) \sin\left({x}\right) \ dx $
$\displaystyle u=\sin\left({x}\right) $ $dv=\sin\left({x}\right)\ dx$
$du=-\cos\left({x}\right) \ dx $ $v=\cos\left({x}\right)$
$\displaystyle uv-\int v \ du$
$\displaystyle \sin\left({x}\right)\cos\left({x}\right)
+ \int\cos\left({x}\right)\cos\left({x}\right) \ dx $
Got stuck here
$\displaystyle \int\sin^2 \left({x}\right) \ dx
= \frac{x}{2}-\frac{\sin\left({2x }\right)}{4}+C $
As given by a table reference
Integral calculator uses reduction formula to solve this
But this is an exercise following integration by parts so..
$\displaystyle \int\sin^2 \left({x}\right) \ dx
\implies \int\sin\left({x}\right) \sin\left({x}\right) \ dx $
$\displaystyle u=\sin\left({x}\right) $ $dv=\sin\left({x}\right)\ dx$
$du=-\cos\left({x}\right) \ dx $ $v=\cos\left({x}\right)$
$\displaystyle uv-\int v \ du$
$\displaystyle \sin\left({x}\right)\cos\left({x}\right)
+ \int\cos\left({x}\right)\cos\left({x}\right) \ dx $
Got stuck here
Last edited: