- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Consider the Lebesgue space $L^1(\Bbb R)$ as an algebra with product given by convolution. Prove that $L^1(\Bbb R)$ is isomorphic as an algebra to an ideal in the algebra $M(\Bbb R)$ of complex Borel measures on $\Bbb R$, and identify the ideal. Note the product in $M(\Bbb R)$ is given by convolution of measures.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Consider the Lebesgue space $L^1(\Bbb R)$ as an algebra with product given by convolution. Prove that $L^1(\Bbb R)$ is isomorphic as an algebra to an ideal in the algebra $M(\Bbb R)$ of complex Borel measures on $\Bbb R$, and identify the ideal. Note the product in $M(\Bbb R)$ is given by convolution of measures.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!