- #1
diffeqnoob
- 14
- 0
Okay, I know this is alot... but I am stuck, so here goes...
Use the method of Laplace transform to solve the initial value problem
[tex]y''+3ty'-6y=0, y(0) = 1, y'(0) = 0[/tex]
[tex]L\{y'' + 3ty' - 6y\} = L\{0\}[/tex]
[tex]s^{2}Y(s) - sy(0) - y'(0) + 3L\{ty'\} - 6Y(s) = 0[/tex]
[tex]s^{2}Y(s) - s(1) - 0 - \frac{d}{ds}\left(3 L\{ty'\}\right) -6Y(s) = 0[/tex]
Now to resolve the [tex]- \frac{d}{ds}\left(3 L\{ty'\}\right)[/tex]
[tex]= - \frac{d}{ds}\left(3 L\{ty'\}\right)[/tex]
[tex]= - \frac{d}{ds}3 \left(sY(s) - y(0)\right)[/tex]
[tex]= -3sY'(s) - 3Y(s)[/tex]
Plugging it back into the eq we now have
[tex]s^{2}Y(s) - s - 3sY'(s) - 3Y(s) - 6Y(s) = 0[/tex]
[tex]-3sY'(s) + (s^{2}-9)Y(s) - s = 0[/tex]
[tex]Y'(s) + \left(-\frac{s}{3} + \frac{3}{s}\right)Y(s) = -\frac{1}{3}[/tex]
[tex]\mu = e^{\int\left(-\frac{s}{3} + \frac{3}{s}\right)ds}[/tex]
[tex]\mu = e^{\left(-\frac{s^{2}}{6} + ln(s^{3})\right)[/tex]
[tex]\mu = s^{3} e^{\left(-\frac{s^{2}}{6}\right)[/tex]
[tex]\int\left(\frac{d}{ds}(s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s)\right) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds[/tex]
[tex]s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds[/tex]
RIGHT SIDE
[tex]=\left(\frac{1}{3}\right)(-3(s^{2}+6)e^{-\left(\frac{s^2}{6}\right)[/tex]
[tex]=(s^2+6)e^{-\left(\frac{s^2}{6}\right) + A[/tex]
[tex]Y(s)=\frac{(s^2+6)}{s^{3}} + \frac{A e^ \frac{s^2{6}{s^{3}}[/tex]
[tex] Limit...as... s \rightarrow \infty...Y(s) = 0...therefore A = 0[/tex]
[tex]Y(s) = \frac{s^2+6}{s^3}[/tex]
Break down the Inverse Laplace
[tex]L^{-1}\{\frac{s^2+6}{s^3}\}[/tex]
[tex]=L^{-1}\{\frac{s^2}{s^3}\} + L^{-1}{\frac{6}{s^3}\}[/tex]
[tex]=L^{-1}\{\frac{1}{s}\} + L^{-1}{\frac{6}{s^3}\}[/tex]
[tex]= 1 + ? [/tex]
This is where I get lost... I don't know how to do the other side... Please help.
Use the method of Laplace transform to solve the initial value problem
[tex]y''+3ty'-6y=0, y(0) = 1, y'(0) = 0[/tex]
[tex]L\{y'' + 3ty' - 6y\} = L\{0\}[/tex]
[tex]s^{2}Y(s) - sy(0) - y'(0) + 3L\{ty'\} - 6Y(s) = 0[/tex]
[tex]s^{2}Y(s) - s(1) - 0 - \frac{d}{ds}\left(3 L\{ty'\}\right) -6Y(s) = 0[/tex]
Now to resolve the [tex]- \frac{d}{ds}\left(3 L\{ty'\}\right)[/tex]
[tex]= - \frac{d}{ds}\left(3 L\{ty'\}\right)[/tex]
[tex]= - \frac{d}{ds}3 \left(sY(s) - y(0)\right)[/tex]
[tex]= -3sY'(s) - 3Y(s)[/tex]
Plugging it back into the eq we now have
[tex]s^{2}Y(s) - s - 3sY'(s) - 3Y(s) - 6Y(s) = 0[/tex]
[tex]-3sY'(s) + (s^{2}-9)Y(s) - s = 0[/tex]
[tex]Y'(s) + \left(-\frac{s}{3} + \frac{3}{s}\right)Y(s) = -\frac{1}{3}[/tex]
[tex]\mu = e^{\int\left(-\frac{s}{3} + \frac{3}{s}\right)ds}[/tex]
[tex]\mu = e^{\left(-\frac{s^{2}}{6} + ln(s^{3})\right)[/tex]
[tex]\mu = s^{3} e^{\left(-\frac{s^{2}}{6}\right)[/tex]
[tex]\int\left(\frac{d}{ds}(s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s)\right) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds[/tex]
[tex]s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds[/tex]
RIGHT SIDE
[tex]=\left(\frac{1}{3}\right)(-3(s^{2}+6)e^{-\left(\frac{s^2}{6}\right)[/tex]
[tex]=(s^2+6)e^{-\left(\frac{s^2}{6}\right) + A[/tex]
[tex]Y(s)=\frac{(s^2+6)}{s^{3}} + \frac{A e^ \frac{s^2{6}{s^{3}}[/tex]
[tex] Limit...as... s \rightarrow \infty...Y(s) = 0...therefore A = 0[/tex]
[tex]Y(s) = \frac{s^2+6}{s^3}[/tex]
Break down the Inverse Laplace
[tex]L^{-1}\{\frac{s^2+6}{s^3}\}[/tex]
[tex]=L^{-1}\{\frac{s^2}{s^3}\} + L^{-1}{\frac{6}{s^3}\}[/tex]
[tex]=L^{-1}\{\frac{1}{s}\} + L^{-1}{\frac{6}{s^3}\}[/tex]
[tex]= 1 + ? [/tex]
This is where I get lost... I don't know how to do the other side... Please help.
Last edited: