- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks to those who participated in last week's POTW! Here's this week's problem (I'm going to give group theory another shot).
-----
Problem: (i) Prove, by induction on $k\geq 1$, that
\[\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^k = \begin{bmatrix}\cos(k\theta) & -\sin(k\theta)\\ \sin(k\theta) & \cos(k\theta)\end{bmatrix}.\]
(ii) Prove that the special orthogonal group $SO(2,\mathbb{R}) = \{A\in O(2,\mathbb{R}) : \det A=1\}$ is isomorphic to the circle group $S^1$.
Remark: For part (ii), recall that the orthogonal group is defined as $O(2,\mathbb{R}) = \{A\in GL(2,\mathbb{R}): A^TA=AA^T = I\}$. I'll also provide a hint for part (ii):
-----
-----
Problem: (i) Prove, by induction on $k\geq 1$, that
\[\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}^k = \begin{bmatrix}\cos(k\theta) & -\sin(k\theta)\\ \sin(k\theta) & \cos(k\theta)\end{bmatrix}.\]
(ii) Prove that the special orthogonal group $SO(2,\mathbb{R}) = \{A\in O(2,\mathbb{R}) : \det A=1\}$ is isomorphic to the circle group $S^1$.
Remark: For part (ii), recall that the orthogonal group is defined as $O(2,\mathbb{R}) = \{A\in GL(2,\mathbb{R}): A^TA=AA^T = I\}$. I'll also provide a hint for part (ii):
Consider the map $\varphi:\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{bmatrix}\mapsto (\cos\theta,\sin\theta)$.
-----