- #1
Canavar
- 16
- 0
Hello,
I want to show the following little exercise:
If we have a manifold M and a atlas A of M, s.t. for all coordinate maps [tex]x,y \in A[/tex]:
[tex]det \; (d(x\circ y^{-1})<0)[/tex].
Then there is a atlas A' s.t. for all x',y': [tex](det \; d(x\circ y'^{-1})>0)[/tex]
I try to change the coordinate maps by reflection, i.e. if x is a coordinate map of A then take [tex]s \circ x[/tex], where s(x)=-x.
but why is then det [tex]d(s \circ f \circ (s \circ g)^{-1})>0[/tex]?
Can you give me a hint?
Regards
I want to show the following little exercise:
If we have a manifold M and a atlas A of M, s.t. for all coordinate maps [tex]x,y \in A[/tex]:
[tex]det \; (d(x\circ y^{-1})<0)[/tex].
Then there is a atlas A' s.t. for all x',y': [tex](det \; d(x\circ y'^{-1})>0)[/tex]
I try to change the coordinate maps by reflection, i.e. if x is a coordinate map of A then take [tex]s \circ x[/tex], where s(x)=-x.
but why is then det [tex]d(s \circ f \circ (s \circ g)^{-1})>0[/tex]?
Can you give me a hint?
Regards