- #1
leopard
- 125
- 0
Homework Statement
Let a function f on (-[tex]\infty[/tex], [tex]\infty[/tex]) be defined as
f(x) = cos x, if |x|<1;
f(x) = 0, otherwise
Find the Fourier transform of f and then evaluate the integral
[tex]\int ^{\infty}_{\infty} \frac{sin 2w}{w} cosw dw[/tex]
2. The attempt at a solution
I calculate the Fourier transform: [tex]\frac{1}{\sqrt{2 \pi}}(\frac{sin(1-w)}{1-w} + \frac{sin(1+w)}{1+w})[/tex]
This is the correct answer.
Now, how can this be used to calculate the integral?