- #1
euphoricrhino
- 22
- 7
Hello,
I'm reading Group Theory in a nutshell for physicist by A Zee. When he introduced Dual tensors (pp 192), he made a claim with a light hint, and I have had great trouble deriving this claim, any help would be appreciated -
Let ##R \in SO(N)## be an ##N##-dimensional rotation, then the following is true
$$
\epsilon^{ijk\cdots n}R^{ip}R^{jq}=\epsilon^{pqr\cdots s}R^{kr}\cdots R^{ns}
$$
(where ##\epsilon## is the antisymmetric symbol and the above uses repeated index summing convention).
The hint was to use the ##N\times N## matrix determinant
$$
\epsilon^{ijk\cdots n}R^{ip}R^{jq}R^{kr}\cdots R^{ns}=\epsilon^{pqr\cdots s} \mbox{det}R=\epsilon^{pqr\cdots s} \quad(\mbox{since }R\mbox{ is special})
$$
and multiply it "by a bunch of ##R^T##s carrying appropriate indices".
I have tried to understand the claim with ##N=3## which I think is the cross product relation, but I couldn't see how that could be obtained by involving ##R^T##, and how it could be extended to ##N## dimensions.
Thanks for the help!
I'm reading Group Theory in a nutshell for physicist by A Zee. When he introduced Dual tensors (pp 192), he made a claim with a light hint, and I have had great trouble deriving this claim, any help would be appreciated -
Let ##R \in SO(N)## be an ##N##-dimensional rotation, then the following is true
$$
\epsilon^{ijk\cdots n}R^{ip}R^{jq}=\epsilon^{pqr\cdots s}R^{kr}\cdots R^{ns}
$$
(where ##\epsilon## is the antisymmetric symbol and the above uses repeated index summing convention).
The hint was to use the ##N\times N## matrix determinant
$$
\epsilon^{ijk\cdots n}R^{ip}R^{jq}R^{kr}\cdots R^{ns}=\epsilon^{pqr\cdots s} \mbox{det}R=\epsilon^{pqr\cdots s} \quad(\mbox{since }R\mbox{ is special})
$$
and multiply it "by a bunch of ##R^T##s carrying appropriate indices".
I have tried to understand the claim with ##N=3## which I think is the cross product relation, but I couldn't see how that could be obtained by involving ##R^T##, and how it could be extended to ##N## dimensions.
Thanks for the help!