- #1
autobot.d
- 68
- 0
Homework Statement
[itex] \phi\left(x,t\right)=\frac{1}{2\pi}\int^{\infty}_{-\infty}e^\left(i\left(xk-tk^2\right)\right)dk[/itex]
Homework Equations
Solve for [itex] \phi [/itex] analytically
The Attempt at a Solution
completing the square of the exponent to give me
[itex] \phi\left(x,t\right)=\frac{1}{2\pi}\int^{\infty}_{-\infty}e^\left(-ti\left(k^2-\frac{x}{t}k + \frac{x^2}{4t^2} - \frac{x^2}{4t^2}\right)\right)dk [/itex]
Simplifying I get
[itex] \phi\left(x,t\right)=\frac{e^\frac{x^2}{4t}}{2\pi}\int^{\infty}_{-\infty}e^\left(-ti\left(k-\frac{x}{2t}\right)^2\right)dk [/itex]
From here I don't know
tried u substitution
[itex] u=k-\frac{x}{2t} , du=dk [/itex]
but this gets me nowhere
any help is appreciated