- #1
humbug
- 2
- 0
Hi all,
Sorry if this is in the wrong section...first time and i couldn't see a convex analysis section.
I'm trying to find a good algorithm/theorem that will maximise the l1 norm (sum of absolute values) of a linear function. Namely, given a function z = c + Ax where z is (nx1), A is (nxm) and x is (mx1), what is the optimal way to choose x such that the sum of the absolute values of z are maximised (obviously x is bounded).
My problem scales really badly so its not feasible to just compute at the bounds of x and choose the biggest outcome. I've also found that the simplex algorithm cannot do it (it only works for minimising the l1 norm). I think the separating hyperplane theorem might be able to help but i can't really see how.
Any help/ideas would be greatly appreciated
Sorry if this is in the wrong section...first time and i couldn't see a convex analysis section.
I'm trying to find a good algorithm/theorem that will maximise the l1 norm (sum of absolute values) of a linear function. Namely, given a function z = c + Ax where z is (nx1), A is (nxm) and x is (mx1), what is the optimal way to choose x such that the sum of the absolute values of z are maximised (obviously x is bounded).
My problem scales really badly so its not feasible to just compute at the bounds of x and choose the biggest outcome. I've also found that the simplex algorithm cannot do it (it only works for minimising the l1 norm). I think the separating hyperplane theorem might be able to help but i can't really see how.
Any help/ideas would be greatly appreciated