- #1
daudaudaudau
- 302
- 0
Homework Statement
If [tex]\lim_{z\rightarrow z_0}f(z)=A[/tex] and [tex]\lim_{z\rightarrow z_0}g(z)=B[/tex] then prove that [tex]\lim_{z\rightarrow z_0}\frac{f(z)}{g(z)}=\frac{A}{B}[/tex] for [tex]B\neq0[/tex]
The Attempt at a Solution
I write [tex]f(z)=A+\epsilon_1(z)[/tex] and [tex]g(z)=B+\epsilon_2(z)[/tex], where the epsilon-functions tend to zero as z tends to z_0. I now write
[tex]
\left|\frac{f(z)}{g(z)}-\frac{A}{B}\right|=\left|\frac{A+\epsilon_1(z)}{B+\epsilon_2(z)}-\frac{A}{B}\right|=\left|\frac{AB+B\epsilon_1(z)-AB-A\epsilon_2(z)}{B^2+B\epsilon_2(z)}\right|\le\frac{|B\epsilon_1(z)|+|A\epsilon_2(z)|}{|B^2+B\epsilon_2(z)|}
[/tex]
And since the above can be made arbitrarily small by letting z tend to z_0, I am done, or what do you think?