- #1
kirkr
- 10
- 1
- Homework Statement
- How can the Schwarzschild solution be solved in a spherical space with a constant radius and constant time?
- Relevant Equations
- General Schwarzchild equation
ds2 = (1−rG/r)c2dt2 −(1/(1−rG/r)dr2 −r2(d(theta)2 +sin2(theta)d(phi)2)
In 1916, Karl Schwarzschild was the first person to present a solution to Einstein's field equations. I am using a form of his equation that is presented in Tensors, Relativity and Cosmology by Mirjana Dalarsson and Nils Dalarsson (Chapter 19, p.205).
I am approaching what may be the simplest problem related to this equation. That is finding a solution for constant time and radius (t=constant, radius = constant).
I have written my results for this simplification below. I have two questions. One, am I doing the integrations correctly and two if the integrations are correct, how are the results combined and interpreted?
For time (t) = constant and r constant then the three dimensional space met-
ric becomes the metric of a two-dimensional sphere or radius r embedded in the
Euclidean space
d l^2 = r^2*(d(theta)^2+sin^2(theta)*d(phi)^2)
Taking square root of both sides :
dl = r*sqrt((d(theta)^2+sin^2(theta)*d(phi)^2))
Question : can this be solved by first setting theta =
constant, d(theta) = 0 and then setting phi = constant, d(phi) = 0 .d(theta) =
0? Result for d(theta) I think??
dl^2 = r*2*sqrt(sin*2(theta)*d(phi)^2) dl = r*sin(theta)*d(phi)
I am approaching what may be the simplest problem related to this equation. That is finding a solution for constant time and radius (t=constant, radius = constant).
I have written my results for this simplification below. I have two questions. One, am I doing the integrations correctly and two if the integrations are correct, how are the results combined and interpreted?
For time (t) = constant and r constant then the three dimensional space met-
ric becomes the metric of a two-dimensional sphere or radius r embedded in the
Euclidean space
d l^2 = r^2*(d(theta)^2+sin^2(theta)*d(phi)^2)
Taking square root of both sides :
dl = r*sqrt((d(theta)^2+sin^2(theta)*d(phi)^2))
Question : can this be solved by first setting theta =
constant, d(theta) = 0 and then setting phi = constant, d(phi) = 0 .d(theta) =
0? Result for d(theta) I think??
dl^2 = r*2*sqrt(sin*2(theta)*d(phi)^2) dl = r*sin(theta)*d(phi)