- #1
juaninf
- 27
- 0
Please anyone help me with stability proof this next numerical method [tex]\dfrac{u^{n+1} - u^{n}}{\vartriangle t} = (u^{n+1}u^n)[/tex]I am trying make :
[tex]
\begin{equation*}
\begin{split}
u_2^{n+1} - u_1^{n+1} & = \displaystyle\frac{u_2^{n}}{1-\vartriangle tu_2^{n}} - \displaystyle\frac{u_1^{n}}{1-\vartriangle tu_1^{n}} \\
& = \displaystyle\frac{u_2^{n}-u_1^{n}}{(1-\vartriangle tu_1^{n})(1-\vartriangle tu_2^{n})}\\
& \geq{\displaystyle\frac{u_2^{n}-u_1^{n}}{e^{-\vartriangle t(u_2^{n}+u_1^{n})}}}\\
\end{split}
\end{equation*}
[/tex]
but I not have more idea :( please help me
[tex]
\begin{equation*}
\begin{split}
u_2^{n+1} - u_1^{n+1} & = \displaystyle\frac{u_2^{n}}{1-\vartriangle tu_2^{n}} - \displaystyle\frac{u_1^{n}}{1-\vartriangle tu_1^{n}} \\
& = \displaystyle\frac{u_2^{n}-u_1^{n}}{(1-\vartriangle tu_1^{n})(1-\vartriangle tu_2^{n})}\\
& \geq{\displaystyle\frac{u_2^{n}-u_1^{n}}{e^{-\vartriangle t(u_2^{n}+u_1^{n})}}}\\
\end{split}
\end{equation*}
[/tex]
but I not have more idea :( please help me
Last edited: