- #1
Damidami
- 94
- 0
I have to prove that
[tex] \cos(x) = 1 - \frac{x^2}{2} + O(x^4)[/tex] [tex] (x \to 0) [/tex]
My ugly attempt:
[tex] \lim_{x \to 0} \frac{\cos(x) - 1 + \frac{x^2}{2}}{x^4}[/tex]
[tex] \lim_{x \to 0} \frac{\cos(x) - 1}{x^4} + \frac{1}{2x^2}[/tex]
[tex] \lim_{x \to 0} \frac{\sin(x)}{4x^3} + \frac{1}{2x^2}[/tex]
[tex] \lim_{x \to 0} \frac{1}{4x^2} + \frac{1}{2x^2}[/tex]
[tex] \lim_{x \to 0} \frac{1}{4x^2} + \frac{2}{4x^2} = \frac{3}{4x^2} = \infty [/tex] (It should be a finite number)
Something does not work here, any help? Thanks!
[tex] \cos(x) = 1 - \frac{x^2}{2} + O(x^4)[/tex] [tex] (x \to 0) [/tex]
My ugly attempt:
[tex] \lim_{x \to 0} \frac{\cos(x) - 1 + \frac{x^2}{2}}{x^4}[/tex]
[tex] \lim_{x \to 0} \frac{\cos(x) - 1}{x^4} + \frac{1}{2x^2}[/tex]
[tex] \lim_{x \to 0} \frac{\sin(x)}{4x^3} + \frac{1}{2x^2}[/tex]
[tex] \lim_{x \to 0} \frac{1}{4x^2} + \frac{1}{2x^2}[/tex]
[tex] \lim_{x \to 0} \frac{1}{4x^2} + \frac{2}{4x^2} = \frac{3}{4x^2} = \infty [/tex] (It should be a finite number)
Something does not work here, any help? Thanks!