- #1
Guest2
- 193
- 0
I'm asked to check whether $\left\{1, e^{ax}, e^{bx}\right\}$ is linearly independent over $\mathbb{R}$ if $a \ne b$, and compute the dimension of the subspace spanned by it. Google said the easiest way to do this is something called the Wronskian. Is this how you do it? The matrix is:
$ \begin{aligned} \begin{bmatrix}1 & e^{ax} & e^{bx} \\ 0 & a e^{ax} & be^{bx} \\ 0 & a^2 e^{ax} & b^2e^{bx}\end{bmatrix} =\begin{bmatrix}1 & e^{ax} & e^{bx} \\ 0 & a e^{ax} & be^{bx} \\ 0 & 0 & b^2e^{bx}-abe^{bx}\end{bmatrix}\end{aligned}$
Which is in the upper triangular form, therefore $\mathcal{W}(1, e^{ax}, e^{bx}) =ae^{ax}(b^2e^{bx}-ab e^{bx})$ and
$ae^{ax}(b^2e^{bx}-ab e^{bx}) =0 \implies a=0, ~b=0, ~ a = b$ Thus $\left\{1, e^{ax}, e^{bx}\right\}$ is linearly independent if $a \ne b$.
The subspace spanned by $\left\{1, e^{ax}, e^{bx}\right\}$ is $l(x) = \left\{\lambda_1 +\lambda_2 e^{ax}+\lambda_3 e^{bx}: \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}\right\}$
It's a basis for this subspace since it's linearly independent and it spans it. So $\text{dim}(l(x)) = 3$.
$ \begin{aligned} \begin{bmatrix}1 & e^{ax} & e^{bx} \\ 0 & a e^{ax} & be^{bx} \\ 0 & a^2 e^{ax} & b^2e^{bx}\end{bmatrix} =\begin{bmatrix}1 & e^{ax} & e^{bx} \\ 0 & a e^{ax} & be^{bx} \\ 0 & 0 & b^2e^{bx}-abe^{bx}\end{bmatrix}\end{aligned}$
Which is in the upper triangular form, therefore $\mathcal{W}(1, e^{ax}, e^{bx}) =ae^{ax}(b^2e^{bx}-ab e^{bx})$ and
$ae^{ax}(b^2e^{bx}-ab e^{bx}) =0 \implies a=0, ~b=0, ~ a = b$ Thus $\left\{1, e^{ax}, e^{bx}\right\}$ is linearly independent if $a \ne b$.
The subspace spanned by $\left\{1, e^{ax}, e^{bx}\right\}$ is $l(x) = \left\{\lambda_1 +\lambda_2 e^{ax}+\lambda_3 e^{bx}: \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}\right\}$
It's a basis for this subspace since it's linearly independent and it spans it. So $\text{dim}(l(x)) = 3$.
Last edited: