MHB How can trigonometric functions be simplified using specific values?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Trig
AI Thread Summary
To simplify $$\arcsin\sin\left(\frac{11\pi}{5}\right)$$, convert the angle to one within the range of $$-\frac{\pi}{2}$$ to $$\frac{\pi}{2}$$. This results in $$\sin\left(\frac{11\pi}{5}\right) = \sin\left(\frac{\pi}{5}\right)$$, leading to the conclusion that $$\arcsin\sin\left(\frac{11\pi}{5}\right) = \frac{\pi}{5}$$. The discussion confirms that $$\arcsin(\sin{t}) = t$$ holds true within its defined range, while a similar relationship for $$\arccos(\cos{t})$$ does not apply due to its different range. The clarification emphasizes the importance of understanding the ranges of these trigonometric functions for accurate simplification.
Guest2
Messages
192
Reaction score
0
$$\arcsin\sin\left(\frac{11\pi}{5}\right)$$

How do you simplify this?
 
Mathematics news on Phys.org
Guest said:
$$\arcsin\sin\left(\frac{11\pi}{5}\right)$$

How do you simplify this?

For us to help you better you should specify what you have tried.

now for the solution

$\arcsin\sin\left(t\right)$ shall lie between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

so convert $sin(\frac{11\pi}{5})$ to $sin(t)$ with t in $-\frac{\pi}{2}$ and $\frac{\pi}{2}$
we get
$\sin(\frac{11\pi}{5})=sin(\frac{\pi}{5}) $
hence
$\arcsin\sin\left(\frac{11\pi}{5}\right)= \frac{\pi}{5}$
 
Thank you. So the idea is that $\arcsin(\sin{t}) = t$ when $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$? If so, is the same true for $\arccos(\cos{t})$?
 
Guest said:
Thank you. So the idea is that $\arcsin(\sin{t}) = t$ when $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$? If so, is the same true for $\arccos(\cos{t})$?

it is true for $\arctan(\tan{t})$ but not for $\arccos(\cos{t})$ because $\cos -t= \cos t$ and hence range for $\arccos(t)$ is $0$ to $\pi$
 
kaliprasad said:
it is true for $\arctan(\tan{t})$ but not for $\arccos(\cos{t})$ because $\cos -t= \cos t$ and hence range for $\arccos(t)$ is $0$ to $\pi$
Thank you, makes perfect sense!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top