MHB How Can Trigonometry Help Find an Obtuse Angle in a Circle Sector?

AI Thread Summary
To find the obtuse angle in the sector of a circle, the sine function is used, where sin(θ) = 0.64 leads to two solutions: one acute and one obtuse. The acute angle is approximately 0.694 radians, while the obtuse angle can be found using θ = π - 0.694. This approach utilizes knowledge of the sine curve, which shows that sine values yield solutions in both the first and second quadrants. Understanding these principles allows for the correct identification of the obtuse angle in the context of circle sectors.
Needhelp2
Messages
17
Reaction score
0
A sector of a circle, let's say AOB with circle centre O and radius 5cm has a chord subtended from A to B. This chord forms a triangle with centre 0. Angle 0 isθradians, and the area of triangle A0B is 8cm2. Given that angle AOB is obtuse, findθ.

I worked out Sin-1(0.64)= 0.694, but this is not an obtuse angle and I don't know how to finish the problem (Sadface) any help would be greatly appreciated!

Thank you!
 

Attachments

  • diagram for maths.png
    diagram for maths.png
    1.9 KB · Views: 96
Mathematics news on Phys.org
You never learned how to solve for angles? (Wondering)

Let's say sin(x) = 0.5

Then, the critical value of x is $\dfrac{\pi}{6}$

The values of x will be = $\dfrac{\pi}{6}$, $\pi - \dfrac{\pi}{6}$, $\dfrac{\pi}{6} + 2\pi$, $3\pi - \dfrac{\pi}{6}$, etc

For sine, the values are in the 1st and 2nd quadrant, for tan, 1st and 3rd quadrant, and for cos, 1st and 4th quadrant.
 
Needhelp said:
A sector of a circle, let's say AOB with circle centre O and radius 5cm has a chord subtended from A to B. This chord forms a triangle with centre 0. Angle 0 isθradians, and the area of triangle A0B is 8cm2. Given that angle AOB is obtuse, findθ.

I worked out Sin-1(0.64)= 0.694, but this is not an obtuse angle and I don't know how to finish the problem (Sadface) any help would be greatly appreciated!

Thank you!

You are looking for the solutions of \(\sin(\theta))=0.64\). If you sketch the \(\sin\) curve you will see that for \(\theta\) in the range \(0\) to \(2\pi\) you have a solution at about \(\theta=0.694\), and another at \(\theta=\pi-0.694\). The first of these is an acute angle (about 36.6 degrees) and the other obtuse.

CB
 
Last edited:
thank you! I did know how to solve equations using sin and cos etc, but I didnt realize I could bring that knowledge to solve this problem!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top