- #1
joypav
- 151
- 0
This is an exercise given in my real analysis course. We have definitions for continuity, uniform continuity, l.s.c and u.s.c., but I don't see how to apply them.
I guess I want to construct $φ$ piece by piece of the interval to eventually cover all of [a,b]?
Exercise:
A continuous function $φ$ on [a, b] is called piece-wise linear provided there is a partition
$a = x_0 < x_1 < · · · < x_n = b$ of [a, b] for which φ is linear on each interval $[x_{i−1}, x_i]$.
Let f be a continuous function on [a, b] and $\epsilon$ a positive number. Show that there is a
piece-wise linear function $φ$ on [a, b] with |$f(x) − φ(x)$| $< \epsilon$ for all x ∈ [a, b].
I guess I want to construct $φ$ piece by piece of the interval to eventually cover all of [a,b]?
Exercise:
A continuous function $φ$ on [a, b] is called piece-wise linear provided there is a partition
$a = x_0 < x_1 < · · · < x_n = b$ of [a, b] for which φ is linear on each interval $[x_{i−1}, x_i]$.
Let f be a continuous function on [a, b] and $\epsilon$ a positive number. Show that there is a
piece-wise linear function $φ$ on [a, b] with |$f(x) − φ(x)$| $< \epsilon$ for all x ∈ [a, b].