- #1
joypav
- 151
- 0
Problem:
Let f be a real-valued function defined on [a,b]. We define the lower envelope of f to be the function g defined by
$g(y) = sup_{\delta>0}inf_{\left| x-y \right|<\delta} f(x)$
(a) Show that for each $x \in [a,b]$, $g(x) \leq f(x)$ and $g(x) = f(x)$ if and only if f is lower semi-continuous at x.
(b) If f is bounded, then g is lower semi-continuous.
(c) If $\phi$ is any lower semi-continuous function such that $\phi(x) \leq f(x)$ for all $x \in [a,b]$, then $\phi(x) \leq g(x)$ for all $x \in [a,b]$.
Proof:
Part (a).
I am confused by the definition for the lower envelope. How do we compare g(x) and f(x)? I am confused about what x would be approaching in our definition for g(y), which is basically the liminf.
Part (b).
Let $\epsilon > 0$.
Then, $\exists \delta > 0$ such that,
$f(x) > g(x_0) + \epsilon$ for $x \in (x_0-\delta, x_0+\delta)$
Let $x \in (x_0-\delta, x_0+\delta)$ be given and let $n = \delta - \left| x-x_0 \right|$.
Then,
$g(x) = lim_{y \rightarrow x}inf f(y) \geq inf_{y \in (x_0-\delta, x_0+\delta)} f(y) \geq g(x_0) + \epsilon$
x arbitrary in $ (x_0-\delta, x_0+\delta) $
$\implies lim_{x\rightarrow x_0}inf g(x) \geq inf_{x \in (x_0-\delta, x_0+\delta)} g(x) \geq g(x_0) + \epsilon$
$\epsilon$ arbitrary
$\implies lim_{x\rightarrow x_0} g(x) \geq g(x_0)$.
Let f be a real-valued function defined on [a,b]. We define the lower envelope of f to be the function g defined by
$g(y) = sup_{\delta>0}inf_{\left| x-y \right|<\delta} f(x)$
(a) Show that for each $x \in [a,b]$, $g(x) \leq f(x)$ and $g(x) = f(x)$ if and only if f is lower semi-continuous at x.
(b) If f is bounded, then g is lower semi-continuous.
(c) If $\phi$ is any lower semi-continuous function such that $\phi(x) \leq f(x)$ for all $x \in [a,b]$, then $\phi(x) \leq g(x)$ for all $x \in [a,b]$.
Proof:
Part (a).
I am confused by the definition for the lower envelope. How do we compare g(x) and f(x)? I am confused about what x would be approaching in our definition for g(y), which is basically the liminf.
Part (b).
Let $\epsilon > 0$.
Then, $\exists \delta > 0$ such that,
$f(x) > g(x_0) + \epsilon$ for $x \in (x_0-\delta, x_0+\delta)$
Let $x \in (x_0-\delta, x_0+\delta)$ be given and let $n = \delta - \left| x-x_0 \right|$.
Then,
$g(x) = lim_{y \rightarrow x}inf f(y) \geq inf_{y \in (x_0-\delta, x_0+\delta)} f(y) \geq g(x_0) + \epsilon$
x arbitrary in $ (x_0-\delta, x_0+\delta) $
$\implies lim_{x\rightarrow x_0}inf g(x) \geq inf_{x \in (x_0-\delta, x_0+\delta)} g(x) \geq g(x_0) + \epsilon$
$\epsilon$ arbitrary
$\implies lim_{x\rightarrow x_0} g(x) \geq g(x_0)$.
Last edited: