- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $\rho=\sqrt[3]{\frac{1+\sqrt{5}}{2}}$.
We have that $\rho$ is a root of $f(x)=x^6-x^3-1\in \mathbb{Q}[x]$, that is irreducible over $\mathbb{Q}$.
We have that all the roots of $f(x)$ are $\rho, \omega\rho, \omega^2\rho, -\frac{1}{\rho}, -\frac{\omega}{\rho}, -\frac{\omega^2}{\rho}$, where $\omega$ is the cubic root of $1$, $\omega\neq 1$ ($\omega^2+\omega+1=0$).
We have that the splitting field of $f(x)$ over $\mathbb{Q}$ is $L=\mathbb{Q}[\rho, \omega]$.
There are automorphisms $\sigma, \tau\in \mathcal{G}(L/\mathbb{Q})$ such that $\sigma (\rho)=-\frac{\omega}{\rho}, \sigma (\omega)=\omega^2, \tau (\rho)\rho, \tau (\omega)=\omega^2$. We have that the order of $\sigma$ is $6$ and the order of $\tau$ is $2$ and that $\tau\sigma=\sigma^5\tau$. So, $\mathcal{G}(L/\mathbb{Q})\cong D_6$.
Let $E$ be an intermediate extension of $L/\mathbb{Q}$ with $E\neq \mathbb{Q}, L$.
($\mathbb{Q}\subset E\subset L$)
We have the following:
Let $\rho=\sqrt[3]{\frac{1+\sqrt{5}}{2}}$.
We have that $\rho$ is a root of $f(x)=x^6-x^3-1\in \mathbb{Q}[x]$, that is irreducible over $\mathbb{Q}$.
We have that all the roots of $f(x)$ are $\rho, \omega\rho, \omega^2\rho, -\frac{1}{\rho}, -\frac{\omega}{\rho}, -\frac{\omega^2}{\rho}$, where $\omega$ is the cubic root of $1$, $\omega\neq 1$ ($\omega^2+\omega+1=0$).
We have that the splitting field of $f(x)$ over $\mathbb{Q}$ is $L=\mathbb{Q}[\rho, \omega]$.
There are automorphisms $\sigma, \tau\in \mathcal{G}(L/\mathbb{Q})$ such that $\sigma (\rho)=-\frac{\omega}{\rho}, \sigma (\omega)=\omega^2, \tau (\rho)\rho, \tau (\omega)=\omega^2$. We have that the order of $\sigma$ is $6$ and the order of $\tau$ is $2$ and that $\tau\sigma=\sigma^5\tau$. So, $\mathcal{G}(L/\mathbb{Q})\cong D_6$.
Let $E$ be an intermediate extension of $L/\mathbb{Q}$ with $E\neq \mathbb{Q}, L$.
($\mathbb{Q}\subset E\subset L$)
We have the following:
- The generator of $E$ is $\omega$, the minimal polynomial of the generator is $x^2+x+1$ and $\mathcal{G}(L/E)=\langle \sigma^2, \sigma\tau\rangle$.
How have we found that $\mathcal{G}(L/E)=\langle \sigma^2, \sigma\tau\rangle$ ? (Wondering)
One of the automorphisms of $\mathcal{G}(L/E)$ is the identity $id_L$.
It holds that $[E:\mathbb{Q}]=\deg (x^2+x+1)=2$, right? (Wondering)
- The generator of $E$ is $\theta=1+\rho-\rho^4+\omega(\rho+\rho^2-\rho^4)$, the minimal polynomial of the generator is $x^3-3x^2-1$ and $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$.
How have we found that $\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle$ ? (Wondering)
Also how can we compute $[E:\mathbb{Q}]$ without using the minimal polynomial? Maybe with the Theorem of Galois Theory that $\mathcal{G}(E/\mathbb{Q})\cong \mathcal{G}(L/E)/ \mathcal{G}(L/\mathbb{Q})$ and so $[E:\mathbb{Q}]=|\mathcal{G}(E/\mathbb{Q})|=\frac{|\mathcal{G}(L/E)|}{|\mathcal{G}(L/\mathbb{Q})|}$ ?
We have that $|\mathcal{G}(L/\mathbb{Q})|=12$ and to find $|\mathcal{G}(L/E)|$ we have to find all the elements, or not?
$\mathcal{G}(L/E)=\langle \sigma^3, \sigma^2\tau\rangle=\{\sigma^3, \sigma^6=id, \sigma^2\tau, (\sigma^2\tau)(\sigma^2\tau)=\dots=id\}=\{id, \sigma^3, \sigma^2\tau\}$
So, $|\mathcal{G}(L/E)|=3$ and so $[E:\mathbb{Q}]=\frac{3}{12}=\frac{1}{4}$ ? That is wrong, isn't it? (Wondering)