- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Let $(\mathcal{C}, \partial)$ be a chain complex of abelian groups. Suppose $f, g : \mathcal{C} \to \mathcal{C}$ are homotopic chain maps. Construct an explicit chain homotopy between the $n$-fold compositions $f^n$ and $g^n$.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $(\mathcal{C}, \partial)$ be a chain complex of abelian groups. Suppose $f, g : \mathcal{C} \to \mathcal{C}$ are homotopic chain maps. Construct an explicit chain homotopy between the $n$-fold compositions $f^n$ and $g^n$.-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!