- #1
RubroCP
- 14
- 4
I have the following definition:
$$ \lim_{x\to p^+}f(x)=+\infty\iff \forall\,\,\varepsilon>0,\,\exists\,\,\delta>0,\,\,\text{with}\,\,p+\delta< b: p< x < p+\delta \implies f(x) > \varepsilon$$
From this, how can I get the definition of
$$\lim_{x\to p^-}=-\infty? $$
$$ \lim_{x\to p^+}f(x)=+\infty\iff \forall\,\,\varepsilon>0,\,\exists\,\,\delta>0,\,\,\text{with}\,\,p+\delta< b: p< x < p+\delta \implies f(x) > \varepsilon$$
From this, how can I get the definition of
$$\lim_{x\to p^-}=-\infty? $$