- #1
juantheron
- 247
- 1
Evaluation of Indefinite Integral $\displaystyle \int_{0}^{1} \sqrt{1-2\sqrt{x-x^2}}dx$
$\bf{My\; Try::}$ We can write the given Integral as
$\displaystyle \int_{0}^{1}\sqrt{\left(\sqrt{x}\right)^2+\left(\sqrt{1-x}\right)^2-2\sqrt{x}\cdot \sqrt{1-x}}dx$
So Integral Convert into $\displaystyle \int_{0}^{1}\left|\sqrt{x}-\sqrt{1-x}\right|dx$
Now How can i solve after that , explanation Required.
Thanks
$\bf{My\; Try::}$ We can write the given Integral as
$\displaystyle \int_{0}^{1}\sqrt{\left(\sqrt{x}\right)^2+\left(\sqrt{1-x}\right)^2-2\sqrt{x}\cdot \sqrt{1-x}}dx$
So Integral Convert into $\displaystyle \int_{0}^{1}\left|\sqrt{x}-\sqrt{1-x}\right|dx$
Now How can i solve after that , explanation Required.
Thanks