- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to construct the field $\mathbb{F}_{3^3}$ and find a generator of $\mathbb{F}_{3^3}^{\star}$.
I thought to consider a $t \in \mathbb{F}_3[x]$ where $t$ is irreducible and $\deg t=3$.
So we consider $t=x^3+x^2-x+1$.
Let $b$ be a root of $t$. Then $b^3+b^2-b+1=0 \Rightarrow b^3=-b^2+b-1$.
So $\mathbb{F}_{3^3}=\{ 0,1,2,b, 2b, 2b+1, 2b+2, b^2, b^2+1, b^2+2, 2b^2, 2b^2+1, 2b^2+2\}$.
Is it right so far?
If so, how can we find a generator of $\mathbb{F}_{3^3}^{\star}$?
I want to construct the field $\mathbb{F}_{3^3}$ and find a generator of $\mathbb{F}_{3^3}^{\star}$.
I thought to consider a $t \in \mathbb{F}_3[x]$ where $t$ is irreducible and $\deg t=3$.
So we consider $t=x^3+x^2-x+1$.
Let $b$ be a root of $t$. Then $b^3+b^2-b+1=0 \Rightarrow b^3=-b^2+b-1$.
So $\mathbb{F}_{3^3}=\{ 0,1,2,b, 2b, 2b+1, 2b+2, b^2, b^2+1, b^2+2, 2b^2, 2b^2+1, 2b^2+2\}$.
Is it right so far?
If so, how can we find a generator of $\mathbb{F}_{3^3}^{\star}$?