MHB How Can We Find the Minimum 2-Norm of Ax-y Using an Orthogonal Matrix?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Minimum
AI Thread Summary
The discussion focuses on finding the minimum 2-norm of the expression \( \|Ax - y\|_2 \) using the decomposition \( A = QR \), where \( Q \) is an orthogonal matrix and \( R \) is an upper triangular matrix. The participants derive that the minimum can be expressed as \( \|(Q^Ty)_{n+1}^m\|_2 \) for any \( y \in \mathbb{R}^m \). They demonstrate the minimization process by rewriting \( Rx \) and applying properties of orthogonal matrices, leading to the conclusion that the minimum occurs when \( Ux = (Q^Ty)_1^n \). The discussion confirms that this approach is valid due to the rank conditions of \( R \) and \( U \).
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $A = QR$, where $Q$ is an orthogonal ($m\times m$)−matrix and $R$ is an upper ($m\times n$)-triangular matrix of rang $n$ ($m>n$).

I want to show that $$\min_{x\in \mathbb{R}^n}\|Ax-y\|_2=\|(Q^Ty)_{n+1}^m\|_2, \ \forall y\in \mathbb{R}^m$$

It is $(a)_k^l=(a_k, \ldots , a_l)^T$ if $a=(a_1, \ldots , a_l)^T\in \mathbb{R}^l$.
I have done the following:

\begin{align*}\min_{x\in \mathbb{R}^n}\|Ax-y\|_2&=\min_{x\in \mathbb{R}^n}\|QRx-y\|_2=\min_{x\in \mathbb{R}^n}\|QRx-QQ^{-1}y\|_2 \\ & =\min_{x\in \mathbb{R}^n}\|Q(Rx-Q^{T}y)\|_2=\min_{x\in \mathbb{R}^n}\|Rx-Q^{T}y\|_2\end{align*}

(We have used here the properties of an orthogonal matrix.)

How could we continue? How can we find that minimum? (Wondering)
 
Mathematics news on Phys.org
Hey mathmari!

We can write $Rx$ as $\binom U0x$ where $U$ is an up upper triangular nxn matrix of rank n, and 0 is a zero matrix, can't we? (Wondering)
It means that:
$$\|Rx-Q^{T}y\|^2
= \|Ux-(Q^{T}y)_1^n\|^2 + \|0-(Q^{T}y)_{n+1}^m\|^2
$$
Can we solve it now? (Wondering)
 
I like Serena said:
Hey mathmari!

We can write $Rx$ as $\binom U0x$ where $U$ is an up upper triangular nxn matrix of rank n, and 0 is a zero matrix, can't we? (Wondering)
It means that:
$$\|Rx-Q^{T}y\|^2
= \|Ux-(Q^{T}y)_1^n\|^2 + \|0-(Q^{T}y)_{n+1}^m\|^2
$$
Can we solve it now? (Wondering)

Ah ok! We have that \begin{align*}\|Rx-Q^{T}y\|_2^2&=\left \|\begin{pmatrix}U \\ 0\end{pmatrix}x-\begin{pmatrix}(Q^T)_1^n \\ (Q^T)_{n+1}^m\end{pmatrix}y\right \|_2^2 =\left \|\begin{pmatrix}Ux-(Q^Ty)_1^n \\ 0-(Q^Ty)_{n+1}^m\end{pmatrix}\right \|_2^2 \\ & =\|Ux-(Q^{T}y)_1^n\|_2^2 + \|(Q^{T}y)_{n+1}^m\|_2^2\end{align*}

Therefore, we get $$\min_{x\in\mathbb{R}^n}\|Rx-Q^{T}y\|^2=\min_{x\in\mathbb{R}^n}\{\|Ux-(Q^{T}y)_1^n\|_2^2 + \|(Q^{T}y)_{n+1}^m\|_2^2\}$$

This is minimized for that $x$ for which it holds $Ux=(Q^{T}y)_1^n$ and so we get $$\min_{x\in \mathbb{R}^n}\|Ax-y\|_2^2=\|(Q^{T}y)_{n+1}^m\|_2^2\Rightarrow \min_{x\in \mathbb{R}^n}\|Ax-y\|_2=\|(Q^{T}y)_{n+1}^m\|_2$$ right? (Wondering)
 
Yep.
And that is possible because $R$ is of rank $n$, and therefore $U$ is as well, making it an invertible matrix. (Nod)
 
I like Serena said:
And that is possible because $R$ is of rank $n$, and therefore $U$ is as well, making it an invertible matrix. (Nod)

Ok! Thanks a lot! (Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
12
Views
2K
Replies
5
Views
2K
Replies
9
Views
3K
Replies
24
Views
4K
Replies
2
Views
2K
Replies
1
Views
2K
Back
Top