- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $A = QR$, where $Q$ is an orthogonal ($m\times m$)−matrix and $R$ is an upper ($m\times n$)-triangular matrix of rang $n$ ($m>n$).
I want to show that $$\min_{x\in \mathbb{R}^n}\|Ax-y\|_2=\|(Q^Ty)_{n+1}^m\|_2, \ \forall y\in \mathbb{R}^m$$
It is $(a)_k^l=(a_k, \ldots , a_l)^T$ if $a=(a_1, \ldots , a_l)^T\in \mathbb{R}^l$.
I have done the following:
\begin{align*}\min_{x\in \mathbb{R}^n}\|Ax-y\|_2&=\min_{x\in \mathbb{R}^n}\|QRx-y\|_2=\min_{x\in \mathbb{R}^n}\|QRx-QQ^{-1}y\|_2 \\ & =\min_{x\in \mathbb{R}^n}\|Q(Rx-Q^{T}y)\|_2=\min_{x\in \mathbb{R}^n}\|Rx-Q^{T}y\|_2\end{align*}
(We have used here the properties of an orthogonal matrix.)
How could we continue? How can we find that minimum? (Wondering)
Let $A = QR$, where $Q$ is an orthogonal ($m\times m$)−matrix and $R$ is an upper ($m\times n$)-triangular matrix of rang $n$ ($m>n$).
I want to show that $$\min_{x\in \mathbb{R}^n}\|Ax-y\|_2=\|(Q^Ty)_{n+1}^m\|_2, \ \forall y\in \mathbb{R}^m$$
It is $(a)_k^l=(a_k, \ldots , a_l)^T$ if $a=(a_1, \ldots , a_l)^T\in \mathbb{R}^l$.
I have done the following:
\begin{align*}\min_{x\in \mathbb{R}^n}\|Ax-y\|_2&=\min_{x\in \mathbb{R}^n}\|QRx-y\|_2=\min_{x\in \mathbb{R}^n}\|QRx-QQ^{-1}y\|_2 \\ & =\min_{x\in \mathbb{R}^n}\|Q(Rx-Q^{T}y)\|_2=\min_{x\in \mathbb{R}^n}\|Rx-Q^{T}y\|_2\end{align*}
(We have used here the properties of an orthogonal matrix.)
How could we continue? How can we find that minimum? (Wondering)