- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Let $u(x)$ be a solution of the problem
$$Lu=-1 \text{ in } \Omega , u|_{\partial{\Omega}}=2, (c(x) \leq 0)$$
I want to determine the constants $c_1,c_2$ such that $c_1 \leq u(x) \leq c_2 (1)$.
Also I want to improve the estimate $(1)$ when it is furthermore given that $c(x) \equiv -1$.
I thought to use the following lemma:
Let $L$ be an elliptic operator in a bounded space $\Omega$ and $u \in C^2(\Omega) \cup C^0(\overline{\Omega})$.
If $Lu \geq 0 (\leq 0) \ \ \ \ \ \ c \leq 0 \text{ in } \Omega$
then $$\sup_{\Omega} u \leq \max \left( \sup_{\partial{\Omega}} u, 0\right) \\ \left( \inf_{\Omega} u \geq \min \{ \inf_{\partial{\Omega}} u, 0\} \right)$$
From this, if we consider that $\Omega$ is bounded , we get that $\inf_{\Omega} u \geq 0$ and so $u \geq 0$.
For the other inequality, I thought to use the following theorem:
Let $Lu=f$ in a bounded space $\Omega$, where $L$ is an elliptic operator and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$. Then $$\sup_{\overline{\Omega}} |u| \leq \sup_{\partial{\Omega}} |u|+ C \sup \frac{|f|}{\lambda}$$
where $C=e^{\alpha d}-1 $
($d $: $ \Omega \subset \{ 0< x_1< d\}$)
($\alpha \geq \frac{\sup{|\beta_1|}}{\lambda}+1$)
($\beta_1: Lu= \sum_{i,j=1}^n a_{ij} u_{x_i x_j}+ \sum_{i=1}^n \beta_i u_{x_i}+cu $ )
($\lambda: 0< \lambda |\xi|^2 \leq \sum_{i,j=1}^n a_{ij} \xi_i \xi_j \ \ \ \ \xi \in \mathbb{R}^n, x \in \Omega $)
From this get that $ \sup_{\overline{\Omega}} |u| \leq 2+ \frac{C}{\lambda} $, so $u \leq 2+\frac{C}{\lambda}$.
Is it right so far? How can we improve the estimate $0 \leq u(x) \leq 2+ \frac{C}{\lambda} $ when we know furthermore that $c(x) \equiv -1$ ? (Thinking)
Let $u(x)$ be a solution of the problem
$$Lu=-1 \text{ in } \Omega , u|_{\partial{\Omega}}=2, (c(x) \leq 0)$$
I want to determine the constants $c_1,c_2$ such that $c_1 \leq u(x) \leq c_2 (1)$.
Also I want to improve the estimate $(1)$ when it is furthermore given that $c(x) \equiv -1$.
I thought to use the following lemma:
Let $L$ be an elliptic operator in a bounded space $\Omega$ and $u \in C^2(\Omega) \cup C^0(\overline{\Omega})$.
If $Lu \geq 0 (\leq 0) \ \ \ \ \ \ c \leq 0 \text{ in } \Omega$
then $$\sup_{\Omega} u \leq \max \left( \sup_{\partial{\Omega}} u, 0\right) \\ \left( \inf_{\Omega} u \geq \min \{ \inf_{\partial{\Omega}} u, 0\} \right)$$
From this, if we consider that $\Omega$ is bounded , we get that $\inf_{\Omega} u \geq 0$ and so $u \geq 0$.
For the other inequality, I thought to use the following theorem:
Let $Lu=f$ in a bounded space $\Omega$, where $L$ is an elliptic operator and $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$. Then $$\sup_{\overline{\Omega}} |u| \leq \sup_{\partial{\Omega}} |u|+ C \sup \frac{|f|}{\lambda}$$
where $C=e^{\alpha d}-1 $
($d $: $ \Omega \subset \{ 0< x_1< d\}$)
($\alpha \geq \frac{\sup{|\beta_1|}}{\lambda}+1$)
($\beta_1: Lu= \sum_{i,j=1}^n a_{ij} u_{x_i x_j}+ \sum_{i=1}^n \beta_i u_{x_i}+cu $ )
($\lambda: 0< \lambda |\xi|^2 \leq \sum_{i,j=1}^n a_{ij} \xi_i \xi_j \ \ \ \ \xi \in \mathbb{R}^n, x \in \Omega $)
From this get that $ \sup_{\overline{\Omega}} |u| \leq 2+ \frac{C}{\lambda} $, so $u \leq 2+\frac{C}{\lambda}$.
Is it right so far? How can we improve the estimate $0 \leq u(x) \leq 2+ \frac{C}{\lambda} $ when we know furthermore that $c(x) \equiv -1$ ? (Thinking)