- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny\text{LCC 206 {7.R.31} Integral log }$
$$\displaystyle
I=\int_0^{\ln\left({10}\right)}
\frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+8}
\ dx \\
\begin{align}\displaystyle
u& = e^{x}-1 &
du&= e^{x} \ d{x} \\
\end{align} \\
I=\int_0^{\ln\left({10}\right)}
\frac{\sqrt{u}}{u+9}
\ du $$
Couldn't get this to integrate
$\tiny\text
{from Surf the Nations math study group}$
$$\displaystyle
I=\int_0^{\ln\left({10}\right)}
\frac{e^{x}\sqrt{e^{x}-1}}{e^{x}+8}
\ dx \\
\begin{align}\displaystyle
u& = e^{x}-1 &
du&= e^{x} \ d{x} \\
\end{align} \\
I=\int_0^{\ln\left({10}\right)}
\frac{\sqrt{u}}{u+9}
\ du $$
Couldn't get this to integrate
$\tiny\text
{from Surf the Nations math study group}$
Last edited: