- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to prove the following sentences:
That's what I have tried:
I want to prove the following sentences:
- $A \subset B \wedge B \subset C \rightarrow A \subset C$
- $A \subset B \wedge B \subset A \rightarrow A=B$
- $\varnothing \subset A$
- $\varnothing=\{ x: x \neq x \}$
That's what I have tried:
- $A \subset B \leftrightarrow \forall x(x \in A \rightarrow x \in B)$
$B \subset C \leftrightarrow \forall x(x \in B \rightarrow x \in C)$
$A \subset B \wedge B \subset C \leftrightarrow \forall x(x \in A \rightarrow x \in B \rightarrow x \in C) \leftrightarrow \forall x(x \in A \rightarrow x \in C) \leftrightarrow A \subset C$
$$$$ - $A \subset B \leftrightarrow \forall x(x \in A \rightarrow x \in B)$
$B \subset A \leftrightarrow \forall x(x \in B \rightarrow x \in A)$
$A \subset B \wedge B \subset A \leftrightarrow \forall x(x \in A \leftrightarrow x \in B)$
$$$$ - In my notes, there is the following proof for this sentence:
Let $x$ an element that does not belong to $A$. Then, since $\varnothing$ does not contain any element, $x$ does not belong to $\varnothing$.
Why do we conclude that $C \subset D$, showing that if $x \notin D \rightarrow x \notin C$ ?
$$$$ - How can we prove that $\varnothing=\{ x: x \neq x \}$ ?