- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I want to prove the following implication:
$$k \in \mathbb{Z} \Leftrightarrow ce^x-1 \mid c^ke^{kx}-1$$ For the direction $\Rightarrow$ I tried the following:
Could you give me a hint how we could show the other direction?
We suppose that $ce^x-1 \mid c^ke^{kx}-1$, that means the solutions of $ce^x-1$ are also solutions of $c^ke^{kx}-1$, right?
Does this help? (Wondering)
I want to prove the following implication:
$$k \in \mathbb{Z} \Leftrightarrow ce^x-1 \mid c^ke^{kx}-1$$ For the direction $\Rightarrow$ I tried the following:
- $k >0$:
$$\sum_{i=0}^{k-1} (ce^x)^i=\frac{(ce^x)^k-1}{ce^x-1} \\ \Rightarrow (ce^x)^k-1=(ce^x-1)\sum_{i=0}^{k-1} (ce^x)^i$$
So when $k$ is an integer $>0$ we have that $ce^x-1 \mid c^ke^{kx}-1$.
- $k <0$:
$$\sum_{i=0}^{k-1} ((ce^x)^{-1})^i=\frac{\left (\frac{1}{ce^x}\right )^k-1}{\frac{1}{ce^x}-1}=\frac{\frac{1-(ce^x)^k}{(ce^x)^k}}{\frac{1-ce^x}{ce^x}}=\frac{ce^x}{(ce^x)^k} \frac{1-(ce^x)^k}{1-ce^x} =\frac{1}{(ce^x)^{k-1}} \frac{(ce^x)^k-1}{ce^x-1} \\ \Rightarrow (ce^x)^k-1=(ce^x-1)(ce^x)^{k-1}\sum_{i=0}^{k-1} ((ce^x)^{-1})^i$$
So when $k$ is an integer $<0$ we have that $ce^x-1 \mid c^ke^{kx}-1$.
Could you give me a hint how we could show the other direction?
We suppose that $ce^x-1 \mid c^ke^{kx}-1$, that means the solutions of $ce^x-1$ are also solutions of $c^ke^{kx}-1$, right?
Does this help? (Wondering)
Last edited by a moderator: