- #1
cbarker1
Gold Member
MHB
- 349
- 23
Dear Everyone, I am stuck on a portion of the sub-ring criterion. The Problem states:
"The center of a ring $R$ is $\{z\in R| zr=rz \ \forall r\in R\}$. Prove that the center of the ring is a subring that contains the identity as well as the center of a division ring is a field."
I am doing the subring first, then the identity portion second. So here is my attempt:
Let $S$ be the center of the ring. We know that the $0\in S$ since $0\in R$ by the definition of a ring. So $S\ne\emptyset$.
Let $a,b\in S$. Then $ar=rb$. $r(a-b)=0$. Thus $a-b \in S$. Here is where I am stuck as well as the next step in the criterion.
What am I doing correctly or wrongly?
Thanks
Cbarker1
"The center of a ring $R$ is $\{z\in R| zr=rz \ \forall r\in R\}$. Prove that the center of the ring is a subring that contains the identity as well as the center of a division ring is a field."
I am doing the subring first, then the identity portion second. So here is my attempt:
Let $S$ be the center of the ring. We know that the $0\in S$ since $0\in R$ by the definition of a ring. So $S\ne\emptyset$.
Let $a,b\in S$. Then $ar=rb$. $r(a-b)=0$. Thus $a-b \in S$. Here is where I am stuck as well as the next step in the criterion.
What am I doing correctly or wrongly?
Thanks
Cbarker1