- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Each two open intervals in $\mathbb{R}$ are equinumerous.
It suffices to show that for each $a,b \in \mathbb{R}$ with $a<b$ it holds that $(0,1) \sim (a,b)$
$$f: (0,1) \xrightarrow[\text{surjective}]{\text{1-1}} (a,b)$$
$$f(t)=(1-t)a+b, t \in (0,1)$$
So this means for example that $(2,9) \sim (-5,100)$, right?
What surjective and 1-1 $f: (2,9) \to (-5,100)$ could we pick in order to show that these two intervals have the same cardinality?
Each two open intervals in $\mathbb{R}$ are equinumerous.
It suffices to show that for each $a,b \in \mathbb{R}$ with $a<b$ it holds that $(0,1) \sim (a,b)$
$$f: (0,1) \xrightarrow[\text{surjective}]{\text{1-1}} (a,b)$$
$$f(t)=(1-t)a+b, t \in (0,1)$$
So this means for example that $(2,9) \sim (-5,100)$, right?
What surjective and 1-1 $f: (2,9) \to (-5,100)$ could we pick in order to show that these two intervals have the same cardinality?